dUTPase activity is critical to maintain genetic stability in Saccharomyces cerevisiae.

Nucleic Acids Res

CEA, DSV Département de Radiobiologie et Radiopathologie, UMR 217 CNRS Radiobiologie Moléculaire et Cellulaire, BP 6, 92265 Fontenay aux Roses, France.

Published: April 2006

We identified a viable allele (dut1-1) of the DUT1 gene that encodes the dUTPase activity in Saccharomyces cerevisiae. The Dut1-1 protein possesses a single amino acid substitution (Gly82Ser) in a conserved motif nearby the active site and exhibits a greatly reduced dUTPase activity. The dut1-1 single mutant exhibits growth delay and cell cycle abnormalities and shows a strong spontaneous mutator phenotype. All phenotypes of the dut1-1 mutant are suppressed by the simultaneous inactivation of the uracil DNA N-glycosylase, Ung1. However, the ung1 dut1-1 double mutant accumulates uracil in its genomic DNA. The viability of the dut1-1 mutant is greatly impaired by the simultaneous inactivation of AP endonucleases. These data strongly suggest that the phenotypes of the dut1-1 mutant result from the incorporation of dUMPs into DNA subsequently converted into AP sites. The analysis of the dut1-1 strain mutation spectrum showed that cytosines are preferentially incorporated in front of AP sites in a Rev3-dependent manner during translesion synthesis. These results point to a critical role of the Dut1 protein in the maintenance of the genetic stability. Therefore, the normal cellular metabolism, and not only its byproducts, is an important source of endogenous DNA damage and genetic instability in eukaryotic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440884PMC
http://dx.doi.org/10.1093/nar/gkl139DOI Listing

Publication Analysis

Top Keywords

dutpase activity
12
dut1-1 mutant
12
genetic stability
8
saccharomyces cerevisiae
8
dut1-1
8
phenotypes dut1-1
8
simultaneous inactivation
8
mutant
5
activity critical
4
critical maintain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!