KLF8 (Krüppel-like factor 8) is a member of the Krüppel transcription factor family that binds CACCC elements in DNA and activates or represses their target genes in a context-dependent manner. Here we present sumoylation as a novel mechanism that regulates KLF8 post-translationally. We found that KLF8 can be covalently modified by small ubiqitin-like modifier (SUMO)-1, SUMO-2, and SUMO-3 in vivo. We showed that KLF8 interacted with the PIAS family of SUMO E3 ligases PIAS1, PIASy, and PIASxalpha but not with E2 SUMO-conjugating enzyme Ubc9. Furthermore, we demonstrated that the E2 and E3 ligases enhanced the sumoylation of KLF8. In addition, site-directed mutagenesis identified lysine 67 as the major sumoylation site on KLF8. Lysine 67 to arginine mutation strongly enhanced activity of KLF8 as a repressor or activator to its physiological target promoters and as an inducer of the G(1) cell cycle progression. Taken together, our results demonstrated that sumoylation of KLF8 negatively regulates its transcriptional activity and cellular functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M513135200 | DOI Listing |
Thorac Cancer
December 2024
Department of Thoracic and Cardiovascular Surgery, Zigong First People's Hospital, Zigong, China.
Objectives: This study aimed to analyze the role of circSEC24A in non-small cell lung cancer (NSCLC) and its underlying mechanism.
Methods: RNA levels of circSEC24A, microRNA-1253 (miR-1253), and KLF transcription factor 8 (KLF8) were detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot or immunohistochemistry assay.
Heliyon
September 2024
Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510080, Guangdong Province, China.
Purpose: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrine disorder affecting women of reproductive age. The pathogenesis of PCOS is influenced by factors such as race, genetics, environment, hyperandrogenemia, hyperinsulinemia, and obesity. However, the molecular mechanisms linking RNA modification and PCOS remain underexplored.
View Article and Find Full Text PDFBiomark Res
August 2024
Cancer Biology & Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/ CI-IPOP@ RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
Comput Biol Med
June 2024
Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany; Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, United Kingdom; Department of Medicine I, University Hospital Dresden, Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany. Electronic address:
Latent diffusion models (LDMs) have emerged as a state-of-the-art image generation method, outperforming previous Generative Adversarial Networks (GANs) in terms of training stability and image quality. In computational pathology, generative models are valuable for data sharing and data augmentation. However, the impact of LDM-generated images on histopathology tasks compared to traditional GANs has not been systematically studied.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2024
Department of Respiratory, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, 210000 Nanjing, Jiangsu, China.
Background: The pentose phosphate pathway (PPP) is a critical metabolic pathway that generates NADPH and ribose-5-phosphate for nucleotide biosynthesis and redox homeostasis. In this study, we investigated a potential regulatory role for Krüppel-like factor 8 (KLF8) in the control of PPP in lung adenocarcinoma (LUAD) cells.
Methods: Based on a comprehensive set of experimental approaches, including cell culture, molecular techniques, and functional assays, we revealed a novel mechanism by which KLF8 promotes the activation of glucose-6-phosphate dehydrogenase (G6PD), a component enzyme in the PPP.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!