It is now widely accepted that visual cortical areas are active during normal tactile perception, but the underlying mechanisms are still not clear. The goal of the present study was to use functional magnetic resonance imaging (fMRI) to investigate the activity and effective connectivity of parietal and occipital cortical areas during haptic shape perception, with a view to potentially clarifying the role of top-down and bottom-up inputs into visual areas. Subjects underwent fMRI scanning while engaging in discrimination of haptic shape or texture, and in separate runs, visual shape or texture. Accuracy did not differ significantly between tasks. Haptic shape-selective regions, identified on a contrast between the haptic shape and texture conditions in individual subjects, were found bilaterally in the postcentral sulcus (PCS), multiple parts of the intraparietal sulcus (IPS) and the lateral occipital complex (LOC). The IPS and LOC foci tended to be shape-selective in the visual modality as well. Structural equation modelling was used to study the effective connectivity among the haptic shape-selective regions in the left hemisphere, contralateral to the stimulated hand. All possible models were tested for their fit to the correlations among the observed time-courses of activity. Two equivalent models emerged as the winners. These models, which were quite similar, were characterized by both bottom-up paths from the PCS to parts of the IPS, and top-down paths from the LOC and parts of the IPS to the PCS. We conclude that interactions between unisensory and multisensory cortical areas involve bidirectional information flow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2006.03.003DOI Listing

Publication Analysis

Top Keywords

haptic shape
16
effective connectivity
12
cortical areas
12
shape texture
12
activity effective
8
connectivity parietal
8
parietal occipital
8
occipital cortical
8
shape perception
8
haptic shape-selective
8

Similar Publications

Lightly touching a solid object reduces postural sway. Here, we determine the effect of artificially modifying haptic feedback for balance. Participants stood with their eyes closed, lightly gripping a manipulandum that moved synchronously with body sway to systematically enhance or attenuate feedback gain between +2 and -2, corresponding to motion in the same or opposite direction to the body, respectively.

View Article and Find Full Text PDF

The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.

View Article and Find Full Text PDF

Mirror-invariance is not exclusively visual but extends to touch.

Sci Rep

December 2024

Department of Psychology, Jagiellonian University, ul. Ingardena 6, 30-060, Kraków, Poland.

Mirror-invariance enables recognition of mirrored objects as identical. During reading acquisition, sighted readers must overcome this innate bias to distinguish between mirror-inverted letters ('d' vs. 'b').

View Article and Find Full Text PDF

Research on Multimodal Control Method for Prosthetic Hands Based on Visuo-Tactile and Arm Motion Measurement.

Biomimetics (Basel)

December 2024

Institute of Instrument Science and Engineering, Southeast University, Nanjing 210096, China.

Article Synopsis
  • The research focuses on enhancing robotic hand function to assist disabled individuals, leveraging advanced multimodal perception and control methods.
  • Key techniques include using a pinhole camera and YOLOv8 for object recognition, along with multi-frame data and clustering algorithms to ensure accurate grasping by the robotic hand.
  • The resulting system achieves a high grasping success rate of 91.63% while maintaining user comfort, demonstrating its effectiveness and potential for real-world application.
View Article and Find Full Text PDF

Being deafblind means my perception differs profoundly from those who are conventionally sighted and have non-impaired hearing. A lot of hidden knowledge is to be found in the disparity between these differing experiences that could be of great value in developing assistive technologies that have a broad scope to engage with both disabled and non-disabled users. This article explores the balancing act between sensory loss and the potential inherent in all of us and how this should be part of the design process of haptic assistive technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!