Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Embryonic sensory neurons express membrane-anchored growth factors that stimulate proliferation and differentiation of Schwann cells. The most important of these are members of the neuregulin-1 (Nrg-1) family that activate the erbB2/erbB3 receptor kinase on Schwann cells. Nrg-1 growth factors display a complex pattern of alternative mRNA splicing. We investigated the expression of the Nrg-1 type I in rat embryo dorsal root ganglion (DRG) neurons. Nrg-1 type I mRNA was abundantly expressed in DRG neurons; molecular cloning identified three distinct isoforms. The most prominent structural difference produced by alternative splicing was truncation of the C-terminal cytoplasmic domain. In sensory neurons and other cells, Nrg-1 type I proteins with the full-length 374-amino-acid cytoplasmic domain were expressed on the cell surface. In contrast, an isoform with a partially truncated cytoplasmic domain was retained in an intracellular compartment. Deletion studies demonstrated the presence of a cryptic intracellular retention signal that was exposed in the truncated cytoplasmic domain. Cell surface Nrg-1 type I molecules were subject to protease-dependent release of the biologically active ectodomain. As a consequence of their intracellular localization, the Nrg-1 type I isoform with a truncated cytoplasmic domain was not subject to membrane shedding. Nrg-1 type I ectodomain release was accelerated by factors present in Schwann cell-conditioned medium. In cells with active Nrg-1 type I ectodomain, shedding products corresponding to the cytoplasmic domain were not detected, because of rapid gamma-secretase- and proteasome-dependent degradation. These results demonstrate that sensory neurons express alternatively spliced neuregulin polypeptides with distinct subcellular localizations and processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20861 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!