Coal tar is one of the oldest and an effective treatment for psoriasis. Coal tar has been directly applied to the skin, or used in combination with UV light as part of the Goeckerman treatment. The use of coal tar has caused long-term remissions in psoriasis, but has fallen out of favor because the treatment requires hospitalization and coal tar is poorly acceptable aesthetically to patients. Thus, determining the active antipsoriatic component of coal tar is of considerable therapeutic interest. We fractionated coal tar into its components, and tested them using the SVR angiogenesis inhibitor assay. Treatment of SVR endothelial cells with coal tar fractions resulted in the isolation of a single fraction with antiangiogenic activity. The active antiangiogenic compound in coal tar is carbazole. In addition to antiangiogenic activity, carbazole inhibited the production of inflammatory IL-15 by human mononuclear cells. IL-15 is elevated in psoriasis and is thought to contribute to psoriatic inflammation. Carbazole treatment also reduced activity of inducible nitric oxide synthase (iNOS), which is proinflammatory and elevated in psoriasis. The effect of carbazole on upstream pathways in human psoriasis was determined, and carbazole was shown to inhibit signal transducer and activator of transcription (stat)3-mediated transcription, which has been shown to be relevant in human psoriasis. IL-15, iNOS, and stat3 activation require the activation of the small GTPase rac for optimal activity. Carbazole was found to inhibit rac activation as a mechanism for its inhibition of downstream inflammatory and angiogenic pathways. Given its antiangiogenic and anti-inflammatory activities, carbazole is likely a major component of the antipsoriatic activity of coal tar. Carbazole and derivatives may be useful in the therapy of human psoriasis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.jid.5700276DOI Listing

Publication Analysis

Top Keywords

coal tar
40
human psoriasis
12
coal
10
tar
10
carbazole
9
antiangiogenic activity
8
tar carbazole
8
activity carbazole
8
elevated psoriasis
8
carbazole inhibit
8

Similar Publications

Study on molecular structural heterogeneity of tar-rich coal based on micro-FTIR.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an 710054 China.

The coal molecular structure in micro-areas plays a critical role in matrix thermal conduction and volatile generation during the pyrolysis of tar-rich coal. However, as a major maceral contributing to hydrocarbon generation, the molecular structures of different micro-areas in vitrinite show heterogeneity, which still lacks research. Micro-FTIR technology was used in this study to characterize the molecular structure in different micro-areas of tar-rich coal with varying tar yields.

View Article and Find Full Text PDF

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

The association between psoriasis and non-melanoma skin cancer (NMSC) remains inconsistent despite biologic plausibility. Immunosuppressive effects of systemic psoriasis treatments have also been hypothesized to contribute to the development of NMSC as well. However, data assessing the risk of NMSC associated with immunomodulatory psoriasis medications, particularly newer biologic therapies, are limited.

View Article and Find Full Text PDF
Article Synopsis
  • In the early 20th century, Japan made significant contributions to cancer research, starting with the 1915 experiment by Yamagiwa and Ichikawa, which induced skin cancer in rabbits using coal tar.
  • In 1932, Sasaki and Yoshida discovered liver cancer in rats through a specific diet involving a chemical compound, marking the first artificial cancer found in internal organs.
  • Finally, in 1967, Sugimura induced stomach cancer in mice with a chemical mutagen, reinforcing the link between DNA abnormalities and cancer development.
View Article and Find Full Text PDF

Progress in Pyrene-4,5,9,10-Tetraone-Based Organic Electrode Materials for Rechargeable Batteries.

ChemSusChem

November 2024

Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.

Article Synopsis
  • Pyrene-4,5,9,10-tetraone (PTO) is a coal tar derivative with potential as a sustainable organic electrode due to its high capacity and redox robustness, but it faces challenges like poor cycling stability and low electrical conductivity.
  • * Recent strategies aim to reduce PTO's solubility in organic electrolytes to prevent issues like self-discharge and shuttle effects, thus enhancing its performance in batteries.
  • * The review discusses structural characteristics of PTO, compares methods to mitigate its solubility issues, explores the design of polymer electrode materials, and identifies future challenges for improving PTO and similar organic electrode materials in energy storage.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!