Quercetin (QRN), one of the most abundant flavonoids in the human diet, is a known antioxidant and inhibitor of cancer cell cycle progression. Here, we provide the first evidence that QRN inhibits angiogenesis via a mechanism involving both suppression of endothelial nitric oxide synthase (eNOS) and early M-phase cell cycle arrest. Bovine aortic endothelial (BAE) cells were exposed to doses of up to 100 micromol/L QRN and assayed for eNOS activity and phosphorylation status. Phosphorylation of eNOS at Ser 617 (bovine sequence) is thought to occur in response to Akt stimulation and to be required for eNOS activity. Together with basal eNOS activity, eNOS phosphorylation at Ser 617 and Akt Ser 473 phosphorylation were dose dependently and concomitantly suppressed by QRN within 30 min. Furthermore, although the significant (P < 0.05) inhibitory effect of a single 100 micromol/L QRN dose on eNOS activity was overcome within approximately 24 h, chronic QRN exposures (24-48 h) led to early M-phase arrest and disruption of mitotic microtubule polymerization. In vivo, QRN administered i.p. to female Balb/C mice bearing both syngeneic mammary tumors and Matrigel implants suppressed angiogenesis as measured by endothelial cell immunohistochemistry and hemoglobin concentration. Taken together, these findings suggest a dual mechanism by which QRN suppresses endothelial cell proliferation, both acutely via inhibition of eNOS Ser 617 phosphorylation, and chronically via perturbation of mitotic microtubule polymerization. This novel mechanism of QRN in endothelial cells may in part explain its inhibitory action on angiogenesis and further discern a potential role of QRN as a chemopreventive agent.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/136.5.1178DOI Listing

Publication Analysis

Top Keywords

enos activity
16
microtubule polymerization
12
ser 617
12
qrn
10
enos
9
bovine aortic
8
aortic endothelial
8
endothelial cells
8
cell cycle
8
early m-phase
8

Similar Publications

The interactive toxic effect of homocysteine and copper on cardiac microvascular endothelial cells during ischemia-reperfusion injury.

Chem Biol Interact

January 2025

Department of Thoracic Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China; Jiangxi Hospital of China-Japan Friendship Hospital, National Regional Center for Respiratory Medicine, Nanchang 330000, Jiangxi, PR China; Jiangxi Institute of Respiratory Disease, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, Jiangxi, PR China. Electronic address:

Hyperhomocysteinemia (HHcy) is associated with the development and progression of chronic cardiovascular diseases through the deleterious effects of high levels of homocysteine (Hcy) on the cardiovascular system. However, the exact mechanism of action of Hcy on the acute injury of the cardiovascular system following ischemia/reperfusion (I/R) remains unclear. The present study demonstrated that copper mobilization occurs during cardiac I/R, and the interactive toxic effect of Hcy and mobile Cu during cardiac I/R induces necroptosis of cardiac microvascular endothelial cells (CMECs) and thus enhances cardiac dysfunction.

View Article and Find Full Text PDF

Infections of the nervous system, such as acute bacterial meningitis, pose serious health problems that require immediate intervention. In experimental animals, exposure to lipopolysaccharide (LPS) is used to induce meningitis. Aside from drug intervention to reduce inflammation in meningitis, aerobic exercise helps to maintain the regulatory mechanisms of brain homeostasis through anti-inflammatory mechanisms.

View Article and Find Full Text PDF

Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).

View Article and Find Full Text PDF

Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1.

Cell Commun Signal

January 2025

Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.

Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.

View Article and Find Full Text PDF

Berberine ameliorates seizure activity and cardiac dysfunction in pentylenetetrazol-kindling seizures in rats: Modulation of sigma1 receptor, Akt/eNOS signaling, and ferroptosis.

Neuropharmacology

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, 46612, Egypt.

Seizures can lead to cardiac dysfunction. Multiple pathways contribute to this phenomenon, of which the chaperone sigma-1 receptor (S1R) signaling represents a promising nexus between the abnormalities seen in both epilepsy and ensuing cardiac complications. The study explored the potential of Berberine (BER), a promising S1R agonist, in treating epilepsy and associated cardiac abnormalities in a pentylenetetrazol (PTZ) kindling rat model of epilepsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!