We demonstrated how the subcycle evolution of the electric field of light can be used to control the motion of bound electrons. Results are presented for the dissociative ionization of deuterium molecules (D2 --> D+ + D), where asymmetric ejection of the ionic fragment reveals that light-driven intramolecular electronic motion before dissociation localizes the electron on one of the two D+ ions in a controlled way. The results extend subfemtosecond electron control to molecules and provide evidence of its usefulness in controlling reaction dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1126259 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom.
Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.
View Article and Find Full Text PDFSci Immunol
January 2025
Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA.
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
Purpose: Graves' ophthalmopathy (GO), the most common extrathyroidal manifestation of Graves' disease, is disabling and disfiguring. Recent studies have shown that statins have a protective effect on individuals with GO. Statins were reported to trigger ferroptosis in some disorders, but little is known about whether statins protect against GO via ferroptosis.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China.
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!