The LIM-homeodomain proteins Isl-1 and Lhx3 act with steroidogenic factor 1 to enhance gonadotrope-specific activity of the gonadotropin-releasing hormone receptor gene promoter.

Mol Endocrinol

Physiologie de l'Axe Gonadotrope, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7079, Physiologie et Physiopathologie, Université Pierre et Marie Curie-Paris6, 4 place Jussieu, 75252 Paris cedex 05, France.

Published: September 2006

The GnRH receptor (GnRH-R) plays a central role in mammalian reproductive function throughout adulthood. It also appears as an early marker gene of the presumptive gonadotrope lineage in developing pituitary. Here, using transient transfections combined with DNA/protein interaction assays, we have delineated cis-acting elements within the rat GnRH-R gene promoter that represent targets for the LIM-homeodomain (LIM-HD) proteins, Isl-1 and Lhx3. These factors, critical in early pituitary development, are thus also crucial for gonadotrope-specific expression of the GnRH-R gene. In heterologous cells, the expression of Isl-1 and Lhx3, together with steroidogenic factor 1 (SF-1), culminates in the activation of both the rat as well as human GnRH-R promoter, suggesting that this combination is evolutionarily conserved among mammals. The specificity of these LIM-HD factors is attested by the inefficiency of related proteins, including Lhx5 and Lhx9, to activate the GnRH-R gene promoter, as well as by the repressive capacity of a dominant-negative derivative of Lhx3. Accordingly, targeted deletion of the LIM response element decreases promoter activity. In addition, experiments with Gal4-SF-1 fusion proteins suggest that LIM-HD protein activity in gonadotrope cells is dependent upon SF-1 binding. Finally, using a transgenic model that allows monitoring of in vivo promoter activity, we show that the overlapping expression of Isl-1 and Lhx3 in the developing pituitary correlates with promoter activity. Collectively, these data suggest the occurrence of a specific LIM-HD pituitary code and designate the GnRH-R gene as the first identified transcriptional target of Isl-1 in the anterior pituitary.

Download full-text PDF

Source
http://dx.doi.org/10.1210/me.2005-0184DOI Listing

Publication Analysis

Top Keywords

isl-1 lhx3
16
gnrh-r gene
16
gene promoter
12
promoter activity
12
proteins isl-1
8
lhx3 steroidogenic
8
steroidogenic factor
8
developing pituitary
8
expression isl-1
8
promoter
7

Similar Publications

Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics.

View Article and Find Full Text PDF

The histone demethylase Kdm6b regulates subtype diversification of mouse spinal motor neurons during development.

Nat Commun

February 2022

Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.

How a single neuronal population diversifies into subtypes with distinct synaptic targets is a fundamental topic in neuroscience whose underlying mechanisms are unclear. Here, we show that the histone H3-lysine 27 demethylase Kdm6b regulates the diversification of motor neurons to distinct subtypes innervating different muscle targets during spinal cord development. In mouse embryonic motor neurons, Kdm6b promotes the medial motor column (MMC) and hypaxial motor column (HMC) fates while inhibiting the lateral motor column (LMC) and preganglionic motor column (PGC) identities.

View Article and Find Full Text PDF

Generation of neurons from human induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain samples and greatly facilitates the progress of research in neurological diseases. However, it is still a challenge to generate a particular neuronal subtype with high purity and yield for determining the pathogenesis of diseased neurons using biochemical approaches. Motor neurons (MNs) are a specialized neuronal subtype responsible for governing both autonomic and volitional movement.

View Article and Find Full Text PDF

Intrinsically disordered regions are highly represented among mammalian transcription factors, where they often contribute to the formation of multiprotein complexes that regulate gene expression. An example of this occurs with LIM-homeodomain (LIM-HD) proteins in the developing spinal cord. The LIM-HD protein LHX3 and the LIM-HD cofactor LDB1 form a binary complex that gives rise to interneurons, whereas in adjacent cell populations, LHX3 and LDB1 form a rearranged ternary complex with the LIM-HD protein ISL1, resulting in motor neurons.

View Article and Find Full Text PDF

LIM-Homeodomain (LIM-HD) transcription factors are highly conserved in animals where they are thought to act in a transcriptional 'LIM code' that specifies cell types, particularly in the central nervous system. In chick and mammals the interaction between two LIM-HD proteins, LHX3 and Islet1 (ISL1), is essential for the development of motor neurons. Using yeast two-hybrid analysis we showed that the Caenorhabditis elegans orthologs of LHX3 and ISL1, CEH-14 and LIM-7 can physically interact.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!