The GnRH receptor (GnRH-R) plays a central role in mammalian reproductive function throughout adulthood. It also appears as an early marker gene of the presumptive gonadotrope lineage in developing pituitary. Here, using transient transfections combined with DNA/protein interaction assays, we have delineated cis-acting elements within the rat GnRH-R gene promoter that represent targets for the LIM-homeodomain (LIM-HD) proteins, Isl-1 and Lhx3. These factors, critical in early pituitary development, are thus also crucial for gonadotrope-specific expression of the GnRH-R gene. In heterologous cells, the expression of Isl-1 and Lhx3, together with steroidogenic factor 1 (SF-1), culminates in the activation of both the rat as well as human GnRH-R promoter, suggesting that this combination is evolutionarily conserved among mammals. The specificity of these LIM-HD factors is attested by the inefficiency of related proteins, including Lhx5 and Lhx9, to activate the GnRH-R gene promoter, as well as by the repressive capacity of a dominant-negative derivative of Lhx3. Accordingly, targeted deletion of the LIM response element decreases promoter activity. In addition, experiments with Gal4-SF-1 fusion proteins suggest that LIM-HD protein activity in gonadotrope cells is dependent upon SF-1 binding. Finally, using a transgenic model that allows monitoring of in vivo promoter activity, we show that the overlapping expression of Isl-1 and Lhx3 in the developing pituitary correlates with promoter activity. Collectively, these data suggest the occurrence of a specific LIM-HD pituitary code and designate the GnRH-R gene as the first identified transcriptional target of Isl-1 in the anterior pituitary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/me.2005-0184 | DOI Listing |
Cell Mol Life Sci
July 2024
Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, 1348, Belgium.
Paralog factors are considered to ensure the robustness of biological processes by providing redundant activity in cells where they are co-expressed. However, the specific contribution of each factor is frequently underestimated. In the developing spinal cord, multiple families of transcription factors successively contribute to differentiate an initially homogenous population of neural progenitors into a myriad of neuronal subsets with distinct molecular, morphological, and functional characteristics.
View Article and Find Full Text PDFNat Commun
February 2022
Department of Biological Sciences, College of Arts and Sciences, University at Buffalo, The State University of New York (SUNY), Buffalo, NY, 14260, USA.
How a single neuronal population diversifies into subtypes with distinct synaptic targets is a fundamental topic in neuroscience whose underlying mechanisms are unclear. Here, we show that the histone H3-lysine 27 demethylase Kdm6b regulates the diversification of motor neurons to distinct subtypes innervating different muscle targets during spinal cord development. In mouse embryonic motor neurons, Kdm6b promotes the medial motor column (MMC) and hypaxial motor column (HMC) fates while inhibiting the lateral motor column (LMC) and preganglionic motor column (PGC) identities.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2020
Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana.
Generation of neurons from human induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain samples and greatly facilitates the progress of research in neurological diseases. However, it is still a challenge to generate a particular neuronal subtype with high purity and yield for determining the pathogenesis of diseased neurons using biochemical approaches. Motor neurons (MNs) are a specialized neuronal subtype responsible for governing both autonomic and volitional movement.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
Intrinsically disordered regions are highly represented among mammalian transcription factors, where they often contribute to the formation of multiprotein complexes that regulate gene expression. An example of this occurs with LIM-homeodomain (LIM-HD) proteins in the developing spinal cord. The LIM-HD protein LHX3 and the LIM-HD cofactor LDB1 form a binary complex that gives rise to interneurons, whereas in adjacent cell populations, LHX3 and LDB1 form a rearranged ternary complex with the LIM-HD protein ISL1, resulting in motor neurons.
View Article and Find Full Text PDFSci Rep
July 2017
School of Life and Environmental Sciences, University of Sydney, NSW, 2006, Australia.
LIM-Homeodomain (LIM-HD) transcription factors are highly conserved in animals where they are thought to act in a transcriptional 'LIM code' that specifies cell types, particularly in the central nervous system. In chick and mammals the interaction between two LIM-HD proteins, LHX3 and Islet1 (ISL1), is essential for the development of motor neurons. Using yeast two-hybrid analysis we showed that the Caenorhabditis elegans orthologs of LHX3 and ISL1, CEH-14 and LIM-7 can physically interact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!