Objective: Data Mining is a relatively new field of Medical Informatics. The aim of this study was to compare Data Mining diagnosis with clinical diagnosis by applying a Data Miner (DM) to a clinical dataset of infertile men with azoospermia.

Design: One hundred and forty-seven azoospermic men were clinically classified into four groups: a) obstructive azoospermia (n=63), b) non-obstructive azoospermia (n=71), c) hypergonadotropic hypogonadism (n=2), and d) hypogonadotropic hypogonadism (n=11). The DM (IBM's DB2/Intelligent Miner for Data 6.1) was asked to reproduce a four-cluster model.

Results: DM formed four groups of patients: a) eugonadal men with normal testicular volume and normal FSH levels (n=86), b) eugonadal men with significantly reduced testicular volume (median 6.5 cm3) and very high FSH levels (n=29), c) eugonadal men with moderately reduced testicular volume (median 14.5 cm3) and raised FSH levels (n=20), and d) hypogonadal men (n=12). Overall DM concordance rate in hypogonadal men was 92%, in obstructive azoospermia 73%, and in non-obstructive azoospermia 69%.

Conclusions: Data Mining produces clinically meaningful results but different from those of the clinical diagnosis. It is possible that the use of large sets of structured and formalised data and continuous evaluation of DM results will generate a useful methodology for the Clinician.

Download full-text PDF

Source
http://dx.doi.org/10.14310/horm.2002.11161DOI Listing

Publication Analysis

Top Keywords

data mining
16
eugonadal men
12
testicular volume
12
fsh levels
12
clinical diagnosis
8
obstructive azoospermia
8
non-obstructive azoospermia
8
reduced testicular
8
volume median
8
hypogonadal men
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!