DNA rotational mobility in a bovine papilloma virus (BPV)-based minichromosome, autonomously replicating in mouse cells, was studied using topoisomer analysis in temperature shift experiments. It was found that in live cells the average number of topological turns increased by six in the course of temperature shift through a range of 37 degrees C. This comprised approximately 85% of the total potential mobility of naked plasmid DNA. DNA rotation in isolated nuclei was found to be 3.5-4.0 turns per 37 degrees C in 100 mM NaCl - much higher than in all experiments with animal cells reported thus far. In low salt mobility was considerably lowered. Attempts to extract minichromosomes from nuclei allowed isolation of no more than 10% of minichromosomal DNA, with could indicate a very high proportion of transcriptionally active minichromosomes in the intracellular population. Growing cells in the presence of sodium butyrate resulted not only in an increase in the level of plasmid superhelicity and a decrease of its transcription (as we report in the accompanying publication) but also reduced rotational mobility of plasmid DNA threefold (from 6 to 2 turns per 37 degrees C). The decrease in DNA rotational mobility after butyrate treatment was also partially manifested in isolated nuclei (especially at lower ionic strength). To check whether histone acetylation is directly responsible for DNA immobilization, we performed in vitro acetylation of histones using acetyl adenylate. This resulted in severe DNA immobilization in experiments using both up and down temperature shifts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00293816DOI Listing

Publication Analysis

Top Keywords

rotational mobility
16
dna
9
animal cells
8
histone acetylation
8
dna rotational
8
temperature shift
8
plasmid dna
8
isolated nuclei
8
turns degrees
8
dna immobilization
8

Similar Publications

Objectives: To form a unique body weight support-Tai Chi Yunshou (BWS-TCY) training method, apply it to the treatment of upper limb dysfunction after stroke, and provide a new safe and effective treatment method for the clinic.

Methods: A total of 93 subjects were recruited and randomly divided into conventional rehabilitation treatment (CRT) group, BWS-TCY group and traditional robot-assisted training (RAT) group in equal proportions. Subjects in the CRT group received 60 minutes of CRT daily.

View Article and Find Full Text PDF

Objective: Previous research has established the effectiveness of active pretensioning seatbelts (APS), also termed motorized pretensioning seatbelts, in mitigating forward leaning and out-of-position displacement during pre-crash scenarios. In the Chinese market, APS trigger times are typically set later than those reported in the literature. This study investigates the real-world performance of APS systems with delayed trigger times under emergency braking conditions.

View Article and Find Full Text PDF

[Outcomes of Retrograde Femoral Nail Osteosynthesis of Intraarticular Fractures of the Distal Femur].

Acta Chir Orthop Traumatol Cech

January 2025

Klinika ortopedie a traumatologie pohybového ústrojí Fakultní nemocnice Plzeň.

Purpose Of The Study: Intraarticular fractures of the distal femur rank among the most severe musculoskeletal injuries. Various treatment options, such as plate osteosynthesis or retrograde nailing, can be employed. This study aims to evaluate the clinical outcomes and complications of intraarticular distal femoral fractures treated with retrograde femoral nail, with particular emphasis on C3 fractures.

View Article and Find Full Text PDF

Background: Firefighters are routinely exposed to significant work-related musculoskeletal disorders (WRMSDs) which can sometimes be career-ending due to the workplace stressors and the physical demands of the job. Shoulder disorders are the third most frequent WRMSDs that cause pain, disability, and morbidity in the general working population. However, little is known about the task-specific causes and risk factors for work-related shoulder disorders (WSDs) among firefighters (FFs).

View Article and Find Full Text PDF

Genomic analysis of mobility measures on 5-month-old gilts associated with structural soundness.

J Anim Sci

January 2025

USDA-Agricultural Research Service, U.S. Meat Animal Research Center (USMARC), Clay Center, NE, USA.

Sow lameness results in premature culling, causing economic loss and well-being issues. A study, utilizing a pressure-sensing mat (GAIT4) and video monitoring system (NUtrack), was conducted to identify objective measurements on gilts that are predictive of future lameness. Gilts (N = 3656) were categorized to describe their lifetime soundness: SOUND, retained for breeding with no detected mobility issues; LAME_SOW, retained for breeding and detected lame as a sow; CULL_STR, not retained due to poor leg structure; LAME_GILT, not retained due to visible signs of lameness; and CULL, not retained due to reasons other than leg structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!