The mechanism of blocking effect of phenylcyclohexyl derivative, IEM-1925, on ionotropic glutamate receptors of the NMDA and AMPA types has been studied on the rat isolated brain neurons. The whole-cell configuration of patck clanp recording technique was used equilibrium conditions and -80 mV holding potential, the IEM-1925 manifests nonselective action on open channels of both receptors. However, the prominent differences in the mechanism of the blocking effect were revealed. Although IEM-1925 can not enter the closed channels of both types, its molecule are able to leave closed channels of the AMPA but not the NMDA receptors. Hyperpolarization reduces removal of blocker from the open channels of the NMDA receptors. Contrary to that, hyperpolarization facilitates going out of the IEM-1925 to cytozol from both open and closed channels. Evidently, the bloker can pass through the AMPA receptor channels into the cell, and the gating mechanism of these channels is located above the binding site for the blocker. The blocking action of the IEM-1925 on the NMDA and AMPA receptors was compared with its potency to weaken the tremor evoked by subcutaneous injection of arecoline to mice. The observed differences in the mechanisms of action help to explain the ambiguous effects of channel blocking drugs on experimental models of pathological processes.
Download full-text PDF |
Source |
---|
Bioorg Chem
January 2025
Cardiovascular Center, The First Hospital of Jilin University, Changchun 130021, China. Electronic address:
The assessment of early atherosclerosis (AS) via fluorescence imaging is crucial for advancing early diagnosis research. Abnormal inflammation biomarkers, including hypochlorous acid (HClO) and viscosity within mitochondria, have been closely linked to the pathogenesis of AS. However, current fluorescent probes predominantly rely on unimodal imaging that targets a single biomarker and lacks mitochondrial specificity, which can result in potential false signal readouts due to the complex intracellular environment.
View Article and Find Full Text PDFBrain Topogr
January 2025
Aging and Neuroscience Laboratory (LABEN), Federal University of Paraíba, João Pessoa, PB, Brazil.
Electroencephalography microstates (EEG-MS) show promise to be a neurobiological biomarker in stroke. Thus, the aim of the study was to identify biomarkers to discriminate stroke patients from healthy individuals based on EEG-MS and clinical features using a machine learning approach. Fifty-four participants (27 stroke patients and 27 healthy age and sex-matched controls) were recruited.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Guizhou Provincial Key Laboratory of Computing and Network Convergence, School of Information, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, P. R. China.
Developing superionic conductor (SIC) materials offers a promising pathway to achieving high ionic conductivity in solid-state electrolytes (SSEs). The LiGePS (LGPS) family has received significant attention due to its remarkable ionic conductivity among various SIC materials. molecular dynamics (AIMD) simulations have been extensively used to explore the diffusion behavior of Li ions in LiGePS.
View Article and Find Full Text PDFNat Plants
January 2025
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
Arabidopsis PHOSPHATE 1 (AtPHO1) and its closest homologue AtPHO1;H1 are phosphate transporters that load phosphate into the xylem vessel for root-to-shoot translocation. AtPHO1 and AtPHO1;H1 are prototypical members of the unique SPX-EXS family, whose structural and molecular mechanisms remain elusive. In this study, we determined the cryogenic electron microscopy structure of AtPHO1;H1 binding with inorganic phosphate (Pi) and inositol hexakisphosphate in a closed conformation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!