We describe a suppressor of the calmodulin mutant cam1 in Paramecium tetraurelia. The cam1 mutant, which has a SER----PHE change at residue 101 of the third calcium-binding domain, inhibits the activity of the Ca(2+)-dependent K+ current and causes exaggerated behavioral responses to most stimuli. An enrichment scheme, based on an increased sensitivity to Ba2+ in cam1 cells, was used to isolate suppressors. One such suppressor, designated cam101, restores both the activity of the Ca(2+)-dependent K+ current and behavioral responses of the cells. We show that the cam101 mutant is an intragenic suppressor of cam1, based on genetic and microinjection data. The cam101 calmodulin is shown to be similar to wild-type calmodulin in terms of its ability to stimulate calmodulin-dependent phosphodiesterase at low concentrations of free calcium. However, the cam101 calmodulin has a reduced affinity for a monoclonal antibody to wild-type Paramecium calmodulin, as does the parental cam1 calmodulin, and a different mobility on acid-urea gels relative to both wild-type and cam1 calmodulin. We have been able to demonstrate that the isolation of intragenic suppressors of a calmodulin mutation is possible, which allows for the further genetic analysis of structure-function relationships in the calmodulin molecule.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1204739 | PMC |
http://dx.doi.org/10.1093/genetics/129.3.717 | DOI Listing |
Cells
December 2024
Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.
The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, University of Miami, Coral Gables, FL, 33146, USA.
The controlled binding of proteins on nanoparticle surfaces remains a grand challenge required for many applications ranging from biomedical to energy storage. The difficulty in achieving this ability arises from the different functional groups of the biomolecule that can adsorb on the nanoparticle surface. While most proteins can only adopt a single structure, metamorphic proteins can access at least two different conformations, which presents intriguing opportunities to exploit such structural variations for binding to nanoparticles.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 520521, China.
Background: Calmodulin-binding transcription activator (CAMTA) proteins play significant roles in signal transduction, growth and development, as well as abiotic stress responses, in plants. Understanding their involvement in the low-temperature stress response of teak is vital for revealing cold resistance mechanisms.
Results: Through bioinformatics analysis, the CAMTA gene family in teak was examined, and six CAMTA genes were identified in teak.
Alzheimers Dement
December 2024
UNAM, School of Medicine, Department of Physiology, CDMX, DF, Mexico.
Background: Mild cognitive impairment may increase the risk of Alzheimer's disease (AD) or probably accelerate the progression. AD is the most common cause of dementia, substantial neuronal loss, and neuropathological lesions can damage many brain regions. Symptoms of the disease begin with mild memory difficulties and evolve towards cognitive impairment.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Lexington, KY, USA.
Background: Our lab recently developed 2 mouse monoclonal antibodies that preferentially react with "distressed astrocytes". One monoclonal, 26A6, was found to react preferentially with a form of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin (CN), that has been cleaved by calpain, to generate a 48 kDa CN fragment (∆CN). We recently published a characterization of this antibody.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!