Endosomal hyperacidification in cystic fibrosis (CF) respiratory epithelial cells is secondary to a loss of sodium transport control owing to a defective form of the CF transmembrane conductance regulator CFTR. Here, we show that endosomal hyperacidification can be corrected by activating the signalling cascade controlling sodium channels through cyclic GMP. Nitric oxide (NO) donors corrected the endosomal hyperacidification in CF cells. Stimulation of CF cells with guanylate cyclase agonists corrected the pH in endosomes. Exposure of CF cells to an inhibitor of cGMP-specific phosphodiesterase PDE5, Sildenafil, normalized the endosomal pH. Treatment with Sildenafil reduced secretion by CF cells of the proinflammatory chemokine interleukin 8 following stimulation with Pseudomonas aeruginosa products. Thus, the endosomal hyperacidification and excessive proinflammatory response in CF are in part due to deficiencies in NO- and cGMP-regulated processes and can be pharmacologically reversed using PDE5 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479567PMC
http://dx.doi.org/10.1038/sj.embor.7400674DOI Listing

Publication Analysis

Top Keywords

endosomal hyperacidification
20
hyperacidification cystic
8
cystic fibrosis
8
signalling cascade
8
endosomal
6
cells
5
fibrosis defective
4
defective nitric
4
nitric oxide-cylic
4
oxide-cylic gmp
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!