Genome-wide analysis of p53 under hypoxic conditions.

Mol Cell Biol

Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA 94303-5152, USA.

Published: May 2006

Hypoxia is an important nongenotoxic stress that modulates the tumor suppressor activity of p53 during malignant progression. In this study, we investigated how genotoxic and nongenotoxic stresses regulate p53 association with chromatin, p53 transcriptional activity, and p53-dependent apoptosis. We found that genotoxic and nongenotoxic stresses result in the accumulation and binding of the p53 tumor suppressor protein to the same cognate binding sites in chromatin. However, it is the stress that determines whether downstream signaling is mediated by association with transcriptional coactivators. In contrast to p53 induced by DNA-damaging agents, hypoxia-induced p53 has primarily transrepression activity. Using extensive microarray analysis, we identified families of repressed targets of p53 that are involved in cell signaling, DNA repair, cell cycle control, and differentiation. Following our previous study on the contribution of residues 25 and 26 to p53-dependent hypoxia-induced apoptosis, we found that residues 25-26 and 53-54 and the polyproline- and DNA-binding regions are also required for both gene repression and the induction of apoptosis by p53 during hypoxia. This study defines a new role for residues 53 and 54 of p53 in regulating transrepression and demonstrates that 25-26 and 53-54 work in the same pathway to induce apoptosis through gene repression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1447427PMC
http://dx.doi.org/10.1128/MCB.26.9.3492-3504.2006DOI Listing

Publication Analysis

Top Keywords

p53
10
tumor suppressor
8
genotoxic nongenotoxic
8
nongenotoxic stresses
8
25-26 53-54
8
gene repression
8
genome-wide analysis
4
analysis p53
4
p53 hypoxic
4
hypoxic conditions
4

Similar Publications

Objective: To investigate the optimal cut-off value of immunohistochemical marker Ki67 as a prognostic factor to predict the recurrence of non-muscle invasive bladder urothelial carcinoma (NMIBUC).

Methods: A total of 331 patients diagnosed with NMIBUC who underwent surgery in the Yongchuan Hospital and the Second Affiliated Hospital of Chongqing Medical University from January 2012 to January 2020 were finally included in this study. The optimal cut-off value of Ki67 for predicting recurrence of NMIBUC was calculated by ROC curve and Youden index.

View Article and Find Full Text PDF

Resistance of cancer cells, especially breast cancer, to therapeutic medicines represents a major clinical obstacle that impedes the stages of treatment. Carcinoma cells that acquire resistance to therapeutic drugs can reprogram their own metabolic processes as a way to overcome the effectiveness of treatment and continue their reproduction processes. Despite the recent developments in medical research in the field of drug resistance, which showed some explanations for this phenomenon, the real explanation, along with the ability to precisely predict the possibility of its occurrence in breast cancer cells, still necessitates a deep consideration of the dynamics of the tumor's response to treatment.

View Article and Find Full Text PDF

TOP2A inhibition and its cellular effects related to cell cycle checkpoint adaptation pathway.

Sci Rep

January 2025

Departamento Biología Experimental, Universidad de Jaén, Paraje Las Lagunillas S/N E23071, Jaén, Spain.

In this study, we investigate the G2 checkpoint activated by chromosome entanglements, the so-called Decatenation Checkpoint (DC), which can be activated by TOP2A catalytic inhibition. Specifically, we focus on the spontaneous ability of cells to bypass or override this checkpoint, referred to as checkpoint adaptation. Some factors involved in adapting to this checkpoint are p53 and MCPH1.

View Article and Find Full Text PDF

Transcriptome analysis unveils the mechanisms of oxidative stress, immunotoxicity and neurotoxicity induced by benzotriazole UV stabilizer-328 in zebrafish embryos.

Ecotoxicol Environ Saf

January 2025

University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

As an emerging pollutant, ultraviolet stabilizer-328 (UV-328) has been frequently detected in aquatic environments and attracted great attention. Nevertheless, the toxicity and mechanisms of UV-328 to aquatic organisms are still not fully understood. In particular, the immunotoxicity and neurotoxicity of UV-328 to aquatic organisms and their mechanisms have not been reported yet.

View Article and Find Full Text PDF

Background: Hypoxia in tumor cells is linked to increased drug resistance and more aggressive behavior. In pancreatic cancer, the tumor microenvironment is notably hypoxic and exhibits strong immunosuppressive properties. Given that immunotherapy is now approved for pancreatic cancer treatment, further understanding of how pancreatic tumor cell hypoxia influences T-cell cytotoxicityis essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!