E2F and retinoblastoma tumor suppressor protein pRB are important regulators of cell proliferation; however, the regulation of these proteins in vivo is not well understood. In Drosophila there are two E2F genes, an activator, de2f1, and a repressor, de2f2. The loss of de2f1 gives rise to the G(1)/S block accompanied by the repression of E2F-dependent transcription. These defects can be suppressed by mutation of de2f2. In this work, we show that the de2f1 mutant phenotype is rescued by the loss of the pre-mRNA splicing factor SR protein B52. Mutations in B52 restore S phase in clones of de2f1 mutant cells and phenocopy the loss of the de2f2 function. B52 acts upstream of de2f2 and plays a specific role in regulation of de2f2 pre-mRNA splicing. In B52-deficient cells, the level of dE2F2 protein is severely reduced and the expression of dE2F2-dependent genes is deregulated. Reexpression of the intronless copy of dE2F2 in B52-deficient cells restores the dE2F2-mediated repression. These results uncover a previously unrecognized role of the splicing factor in maintaining the G(1)/S block in vivo by specific regulation of the dE2F2 repressor function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1447424 | PMC |
http://dx.doi.org/10.1128/MCB.26.9.3468-3477.2006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!