A-type K+ current of dopamine and GABA neurons in the ventral tegmental area.

J Neurophysiol

Department of Physiology and Biophysics, University of Illinois at Chicago, 60612-7342, USA.

Published: August 2006

A-type K(+) current (I(A)) is a rapidly inactivating voltage-dependent potassium current which can regulate the frequency of action potential (AP) generation. Increased firing frequency of ventral tegmental area (VTA) neurons is associated with the reinforcing effects of some drugs of abuse like nicotine and ethanol. In the present study, we classified dopamine (DA) and GABA VTA neurons, and investigated I(A) properties and the physiological role of I(A) in these neurons using conventional whole cell current- and voltage-clamp recording. DA VTA neurons had a mean firing frequency of 3.5 Hz with a long AP duration. GABA VTA neurons had a mean firing frequency of 16.7 Hz with a short AP duration. For I(A) properties, the voltage-dependence of steady-state I(A) activation and inactivation was similar in DA and GABA VTA neurons. I(A) inactivation was significantly faster and became faster at positive voltages in GABA neurons than DA neurons. Recovery from inactivation was significantly faster in DA neurons than GABA neurons. I(A) current density at full recovery was significantly larger in DA neurons than GABA neurons. In DA and GABA VTA neurons, latency to the first AP after the recovery from membrane hyperpolarization (repolarization latency) was measured. Longer repolarization latency was accompanied by larger I(A) current density in DA VTA neurons, compared with GABA VTA neurons. We suggest that I(A) contributes more to the regulation of AP generation in DA VTA neurons than in GABA VTA neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01318.2005DOI Listing

Publication Analysis

Top Keywords

vta neurons
40
gaba vta
24
neurons
18
gaba neurons
16
neurons gaba
16
firing frequency
12
gaba
10
vta
10
a-type current
8
dopamine gaba
8

Similar Publications

Recreational use of nitrous oxide (NO) has risen dramatically over the past decades. This study aimed to examine its rewarding effect and the underlying mechanisms. The exposure of mice to a subanesthetic concentration (20%) of NO for 30 min for 4 consecutive days paired with NO in the morning and paired with the air in the afternoon produced apparent rewarding behavior in the conditioned place preference (CPP) paradigm.

View Article and Find Full Text PDF

With the rise in fast-food culture and the continued high numbers of tobacco-related deaths, there has been a great deal of interest in understanding the relationship between high-fat diet (HFD) and nicotine use behaviors. Using adult mice and a patch-clamp electrophysiology assay, we investigated the influence of HFD on the excitability of ventral tegmental area (VTA) dopamine neurons and pyramidal neurons in the medial prefrontal cortex (mPFC) given their role in modulating the reinforcing effects of nicotine and natural rewards. We then examined whether HFD-induced changes in peripheral markers were associated with nicotine use behaviors.

View Article and Find Full Text PDF

Superior colliculus controls the activity of the substantia nigra pars compacta and ventral tegmental area in an asymmetrical manner.

J Neurosci

January 2025

Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 9 Gronostajowa street, 30-387 Kraków, Poland.

Dopaminergic (DA) neurons of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play a crucial role in controlling animals' orienting and approach behaviors toward relevant environmental stimuli. The ventral midbrain receives sensory input from the superior colliculus (SC), a tectal region processing information from contralateral receptive fields of various modalities. Given the significant influence of dopamine release imbalance in the left and right striatum on animals' movement direction, our study aimed to investigate the lateralization of the connection between the lateral SC and the midbrain DA system in male rats.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

Amphetamine abuse is a global health epidemic that is difficult to treat due to individual differences in response to environmental factors, including stress reactivity and anxiety levels, as well as individual neuronal differences, which may result in increased/decreased vulnerability to addiction. In the present study, we investigated whether the Wistar rats behavioral traits of high (HR) and low (LR) locomotor activity to novelty influence motivational behavior (induced feeding model; iFR by electrical stimulation of the ventral tegmental area; Es-VTA) supported by amphetamine injection into the nucleus accumbens shell (AcbSh) (HR, n = 5; LR, n = 5). A correlation was found between the novelty test's locomotor activity score and the frequency threshold percentage change ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!