The Melanocortin-4 Receptor is a G-protein coupled receptor that has been physiologically linked to participate in the regulation of energy homeostasis. The Melanocortin-4 Receptor is stimulated by endogenous melanocortin agonists derived from the pro-opiomelanocortin gene transcript and antagonized by the endogenous antagonist agouti-related protein. Central administration of melanocortin agonists has been demonstrated to decrease food intake and conversely, treatment with antagonists resulted in increased food intake. Deletion of the Melanocortin-4 Receptor gene from the mouse genome results in an obese and hyperphagic phenotype. Polymorphisms of the human Melanocortin-4-Receptor have been found in severely obese individuals, suggesting that Melanocortin-4 Receptor malfunction might be involved in human obesity and obesity-associated diabetes. Herein, we have performed experiments to understand the molecular mechanisms associated with the L250Q human Melanocortin-4-Receptor polymorphism discovered in an extremely obese woman. This L250Q human Melanocortin-4-Receptor has been pharmacologically characterized to result in a constitutively active receptor. The fact that a constitutively active human Melanocortin-4-Receptor mutation was found in an obese person is a physiologic contradiction, as chronic activation of the human Melanocortin-4-Receptor and subsequently high cyclic adenosine monophosphate levels should theoretically result in a normal or lean phenotype. In this study, we demonstrated that agouti-related protein acts as an inverse agonist at this constitutively active receptor, and we propose a mechanism by which agouti-related protein might contribute to the obese phenotype in the L250Q patient. In addition, using receptor mutagenesis, pharmacology, and computer modeling approaches, we investigated the molecular mechanism by which modification of the L250 residue results in constitutive activation of the human Melanocortin-4-Receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1747-0285.2006.00362.xDOI Listing

Publication Analysis

Top Keywords

human melanocortin-4-receptor
24
melanocortin-4 receptor
20
l250q human
12
agouti-related protein
12
constitutively active
12
receptor
9
molecular mechanism
8
constitutive activation
8
human
8
melanocortin agonists
8

Similar Publications

Defining Hyperphagia for Improved Diagnosis and Management of MC4R Pathway-Associated Disease: A Roundtable Summary.

Curr Obes Rep

January 2025

Section on Growth and Obesity, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.

Purpose Of Review: Hyperphagia is a condition associated with rare obesity-related diseases, presenting as a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors. In October 2023, a group of researchers and clinicians with expert knowledge on hyperphagia convened at the annual ObesityWeek meeting to discuss the need for a unified definition of hyperphagia and key items necessary to improve the identification, assessment, and treatment of hyperphagia in patients with melanocortin 4 receptor (MC4R) pathway-associated diseases.

Recent Findings: The definition of hyperphagia proposed by this group is a pathologic, insatiable hunger accompanied by abnormal food-seeking behaviors.

View Article and Find Full Text PDF

Background: The growth in obesity and rates of abdominal obesity in developing countries is due to the dietary transition, meaning a shift from traditional, fiber-rich diets to Westernized diets high in processed foods, sugars, and unhealthy fats. Environmental changes, such as improving the quality of dietary fat consumed, may be useful in preventing or mitigating the obesity or unhealthy obesity phenotype in individuals with a genetic predisposition, although this has not yet been confirmed. Therefore, in this study, we investigated how dietary fat quality indices with metabolically healthy obesity (MHO) or metabolically unhealthy obesity (MUO) based on the Karelis criterion interact with genetic susceptibility in Iranian female adults.

View Article and Find Full Text PDF

regulates melanocortin 4 receptor transcription and energy homeostasis.

Sci Transl Med

January 2025

Hypothalamic Research Center, Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX, 75390, USA.

Disruption of hypothalamic melanocortin 4 receptors (MC4Rs) causes obesity in mice and humans. Here, we investigated the transcriptional regulation of in the hypothalamus. In mice, we show that the homeodomain transcription factor Orthopedia (OTP) is enriched in MC4R neurons in the paraventricular nucleus (PVN) of the hypothalamus and directly regulates transcription.

View Article and Find Full Text PDF

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R.

View Article and Find Full Text PDF

The prevalence of obesity is increasing worldwide, affecting both children and adults. This obesity epidemic is mostly driven by an increase in energy intake (abundance of highly palatable energy-dense food and drinks) and to a lesser degree a decrease in energy expenditure (sedentary lifestyle). A small proportion of individuals with obesity are affected by genetic forms of obesity, which often relate to mutations in the leptin-melanocortin pathway or are part of syndromes such as the Bardet-Biedl syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!