Biorenewable resources such as carbohydrates are considered alternative feedstocks for oxygenated chemicals. This work investigates the stability of silica-supported Ru catalysts in the aqueous phase conversion of glucose to sorbitol. In situ X-ray absorption spectroscopy at the Ru K edge revealed that air-exposed silica-supported Ru was in an oxidized state but was subsequently reduced in aqueous solutions saturated with 40 bar H(2) at 373 K. Furthermore, exposure to aqueous phase conditions resulted in the sintering of Ru particles on the silica surface. However, the presence of glucose in the aqueous phase stabilized the growth of the Ru particles. Batchwise hydrogenation of glucose at 373 K and 80 bar H(2) over a Ru/SiO(2) (2.67 wt %) catalyst is nearly 100% selective to sugar alcohol with an average turnover frequency of 0.21 +/- 0.04 s(-1). The hydrogenation reaction was not mass transfer limited according to the Madon-Boudart criterion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp057022yDOI Listing

Publication Analysis

Top Keywords

aqueous phase
12
x-ray absorption
8
absorption spectroscopy
8
metal particle
4
particle growth
4
glucose
4
growth glucose
4
glucose hydrogenation
4
hydrogenation ru/sio2
4
ru/sio2 evaluated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!