Objective: To predict human intestinal absorption and permeability coefficients in Caco-2 cell monolayers from net polar atomic charges of drug molecules.
Methods: The net atomic charges and the volumes of drug molecules were obtained with the semiempirical self-consistent field molecular orbital calculation CNDO/2 method and Mont Carlo method respectively, using the minimum energy conformation obtained from the optimization of the standard molecular geometry with the molecular mechanics MM+ method. The stepwise multiple regression analysis was used to obtain the correlation equations.
Result: Both percent of human intestinal absorption and permeability coefficients in Caco-2 cell monolayers of drug molecules were well correlated with the sum of the net atomic charges of all hydrogen-bonding donors (sigmaQH) and the sum of the net atomic charges of all hydrogen-bonding acceptors (sigmaQN, 0). The more the net positive atomic charges of hydrogen-bonding donors and the net negative atomic charges of hydrogen-bonding acceptors, the less were the percent human intestinal absorption and permeability coefficients in Caco-2 cell monolayers of drug molecules.
Conclusion: Drug absorption in human intestines is closely related with its hydrogen-bonding potential. The drug molecules with weaker hydrogen-bonding potential have greater percent human intestinal absorption. The net polar atomic charges can be computed simply, so they can be used in high throughput screening of oral drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3785/j.issn.1008-9292.2006.02.016 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).
View Article and Find Full Text PDFNature
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
Dielectric-based energy storage capacitors characterized with fast charging and discharging speed and reliability play a vital role in cutting-edge electrical and electronic equipment. In pursuit of capacitor miniaturization and integration, dielectrics must offer high energy density and efficiency. Antiferroelectrics with antiparallel dipole configurations have been of significant interest for high-performance energy storage due to their negligible remanent polarization and high maximum polarization in the field-induced ferroelectric state.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
A particle current generated by pumping in the absence of gradients in potential energy, density or temperature is associated with non-trivial dynamics. A representative example is charge pumping that is associated with the quantum Hall effect and the quantum anomalous Hall effect. Spin pumping, the spin equivalent of charge pumping, refers to the emission of a spin current by magnetization dynamics.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.
View Article and Find Full Text PDFInorg Chem
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Pressurized IrX (X = P and As) stands out as the sole -type superconductors among dozens of filled-skutterudites that are primarily characterized by -type charge carriers. The emergence of superconductivity is proposed to be intimately related to the inharmonic rattling phonons originating from the filled atoms. Here, we explore the impact of the size effect of the rattling atoms by substituting X with Sb, whose radius is 30 and 17% larger than those of P and As, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!