[Prediction of human intestinal absorption from net polar atomic charges of drug molecules].

Zhejiang Da Xue Xue Bao Yi Xue Ban

Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.

Published: March 2006

Objective: To predict human intestinal absorption and permeability coefficients in Caco-2 cell monolayers from net polar atomic charges of drug molecules.

Methods: The net atomic charges and the volumes of drug molecules were obtained with the semiempirical self-consistent field molecular orbital calculation CNDO/2 method and Mont Carlo method respectively, using the minimum energy conformation obtained from the optimization of the standard molecular geometry with the molecular mechanics MM+ method. The stepwise multiple regression analysis was used to obtain the correlation equations.

Result: Both percent of human intestinal absorption and permeability coefficients in Caco-2 cell monolayers of drug molecules were well correlated with the sum of the net atomic charges of all hydrogen-bonding donors (sigmaQH) and the sum of the net atomic charges of all hydrogen-bonding acceptors (sigmaQN, 0). The more the net positive atomic charges of hydrogen-bonding donors and the net negative atomic charges of hydrogen-bonding acceptors, the less were the percent human intestinal absorption and permeability coefficients in Caco-2 cell monolayers of drug molecules.

Conclusion: Drug absorption in human intestines is closely related with its hydrogen-bonding potential. The drug molecules with weaker hydrogen-bonding potential have greater percent human intestinal absorption. The net polar atomic charges can be computed simply, so they can be used in high throughput screening of oral drugs.

Download full-text PDF

Source
http://dx.doi.org/10.3785/j.issn.1008-9292.2006.02.016DOI Listing

Publication Analysis

Top Keywords

atomic charges
32
human intestinal
20
intestinal absorption
20
charges hydrogen-bonding
16
net polar
12
polar atomic
12
absorption permeability
12
permeability coefficients
12
coefficients caco-2
12
caco-2 cell
12

Similar Publications

Molecular Uranium Dioxide-Mediated CO Photoreduction.

J Am Chem Soc

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.

The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).

View Article and Find Full Text PDF

Enhanced energy storage in antiferroelectrics via antipolar frustration.

Nature

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Dielectric-based energy storage capacitors characterized with fast charging and discharging speed and reliability play a vital role in cutting-edge electrical and electronic equipment. In pursuit of capacitor miniaturization and integration, dielectrics must offer high energy density and efficiency. Antiferroelectrics with antiparallel dipole configurations have been of significant interest for high-performance energy storage due to their negligible remanent polarization and high maximum polarization in the field-induced ferroelectric state.

View Article and Find Full Text PDF

A particle current generated by pumping in the absence of gradients in potential energy, density or temperature is associated with non-trivial dynamics. A representative example is charge pumping that is associated with the quantum Hall effect and the quantum anomalous Hall effect. Spin pumping, the spin equivalent of charge pumping, refers to the emission of a spin current by magnetization dynamics.

View Article and Find Full Text PDF

The polycrystalline nature of perovskites, stemming from their facile solution-based fabrication, leads to a high density of grain boundaries (GBs) and point defects. However, the impact of GBs on perovskite performance remains uncertain, with contradictory statements found in the literature. We developed a machine learning force field, sampled GB structures on a nanosecond time scale, and performed nonadiabatic (NA) molecular dynamics simulations of charge carrier trapping and recombination in stoichiometric and doped GBs.

View Article and Find Full Text PDF

Size-Effect Enriched Phase Diagram in -Type Skutterudite Superconductor IrSb.

Inorg Chem

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Pressurized IrX (X = P and As) stands out as the sole -type superconductors among dozens of filled-skutterudites that are primarily characterized by -type charge carriers. The emergence of superconductivity is proposed to be intimately related to the inharmonic rattling phonons originating from the filled atoms. Here, we explore the impact of the size effect of the rattling atoms by substituting X with Sb, whose radius is 30 and 17% larger than those of P and As, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!