Aim: To evaluate the potential of S-nitroso-N-acetylcysteine (SNAC) in inhibition of lipid peroxidation and the effect of oral SNAC administration in the prevention of nonalcoholic fatty liver disease (NAFLD) in an animal model.

Methods: NAFLD was induced in Wistar male rats by choline-deficient diet for 4 wk. SNAC-treated animals (n=6) (1.4 mg/kg per day of SNAC, orally) were compared to 2 control groups: one (n=6) received PBS solution and the other (n=6) received NAC solution (7 mg/kg per day). Histological variables were semiquantitated with respect to macro and microvacuolar fat changes, its zonal distribution, foci of necrosis, portal and perivenular fibrosis, and inflammatory infiltrate with zonal distribution. LOOHs from samples of liver homogenates were quantified by HPLC. Nitrate levels in plasma of portal vein were assessed by chemiluminescence. Aqueous low-density lipoprotein (LDL) suspensions (200 microg protein/mL) were incubated with CuCl(2) (300 micromol/L) in the absence and presence of SNAC (300 micromol/L) for 15 h at 37 degree Celsius. Extent of LDL oxidation was assessed by fluorimetry. Linoleic acid (LA) (18.8 micromol/L) oxidation was induced by soybean lipoxygenase (SLO) (0.056 micromol/L) at 37 degree Celsius in the presence and absence of N-acetylcysteine (NAC) and SNAC (56 and 560 micromol/L) and monitored at 234 nm.

Results: Animals in the control group developed moderate macro and microvesicular fatty changes in periportal area. SNAC-treated animals displayed only discrete histological alterations with absence of fatty changes and did not develop liver steatosis. The absence of NAFLD in the SNAC-treated group was positively correlated with a decrease in the concentration of LOOH in liver homogenate, compared to the control group (0.7+/-0.2 nmol/mg vs 3.2+/-0.4 nmol/mg protein, respectively, P<0.05), while serum levels of aminotransferases were unaltered. The ability of SNAC in preventing lipid peroxidation was confirmed in in vitro experiments using LA and LDL as model substrates.

Conclusion: Oral administration of SNAC prevents the onset of NAFLD in Wistar rats fed with choline-deficient diet. This effect is correlated with the ability of SNAC to block the propagation of lipid peroxidation in vitro and in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4087516PMC
http://dx.doi.org/10.3748/wjg.v12.i12.1905DOI Listing

Publication Analysis

Top Keywords

fatty liver
8
liver disease
8
snac-treated animals
8
mg/kg day
8
compared control
8
n=6 received
8
zonal distribution
8
300 micromol/l
8
micromol/l degree
8
degree celsius
8

Similar Publications

Aim: Sarcopenic obesity (SO) is associated with adverse outcomes in diseased patients. This study aimed to examine the prevalence and risks associated with SO, with a focus on the impact of SO on cardiovascular risk in patients with MASLD.

Materials And Methods: In this cross-sectional study, patients with MASLD were prospectively enrolled.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Purpose Of Review: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, characterized by hepatic steatosis with at least one cardiometabolic risk factor. Patients with MASLD are at increased risk for the occurrence of cardiovascular events. Within this review article, we aimed to provide an update on the pathophysiology of MASLD, its interplay with cardiovascular disease, and current treatment strategies.

View Article and Find Full Text PDF

The association between the dietary index for gut microbiota and metabolic dysfunction-associated fatty liver disease: a cross-sectional study.

Diabetol Metab Syndr

January 2025

Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Background: The relationship between the gut microbiome and metabolic dysfunction-associated fatty liver disease (MAFLD) has garnered increasing attention. However, the association between the dietary index for gut microbiota (DI-GM), a measure of microbiome diversity, and MAFLD has yet to be fully explored.

Methods: Data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES) were analyzed, including 7243 participants.

View Article and Find Full Text PDF

Here we describe an approach and overall concept on how to train undergraduate university students to understand basic regulation and integration of glucose and fatty acid metabolism in response to fasting, intake of carbohydrates and aerobic exercise. During lectures and both theoretical and practical sessions, the students read, analyse, and discuss the fundamentals of Randle cycle. They focus on how metabolism is regulated in adipose tissue, skeletal muscle, and liver at a molecular level under various metabolic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!