Effect of organic cosolvents on the free solution mobility of curved and normal DNA molecules.

Electrophoresis

Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.

Published: April 2006

The free solution mobilities of curved and normal 199-bp DNA fragments have been measured in buffer solutions containing various quantities of the organic cosolvents methanol, ethanol, 2-propanol, 2-methyl-2,4-pentanediol (MPD), ethylene glycol, and ACN, using CE. The curved fragment, taken from the VP1 gene of SV40, contains five unevenly spaced A- and T-tracts in a centrally located "curvature module"; the A- and T-tracts have been mutated to other sequences in the normal 199-bp fragment. The free solution mobility of the curved 199-bp fragment is significantly lower than that of its normal counterpart in aqueous solutions [Stellwagen, E., Lu, Y. J., Stellwagen, N. C., Nucleic Acids Res. 2005, 33, 4425-4432]. The mobilities of both the curved and normal fragments decrease with increasing cosolvent concentration, due to the effect of the cosolvent on the viscosity and dielectric constant of the solution. The mobility differences between the curved and normal 199-bp fragments and the mobility ratios decrease approximately linearly with the increasing mole fraction of cosolvent in the solution. Hence, MPD and other organic cosolvents affect DNA electrophoretic mobility by a common mechanism, most likely the preferential hydration of the DNA surface that occurs in aqueous cosolvents. The gradual loss of the anomalously slow mobility of the curved 199-bp fragment with increasing cosolvent concentration, combined with other data in the literature, suggests that preferential hydration gradually widens the narrow A-tract minor groove, releasing site-bound counterions in the minor groove and shifting the conformation toward that of normal DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200500941DOI Listing

Publication Analysis

Top Keywords

curved normal
16
organic cosolvents
12
free solution
12
solution mobility
12
mobility curved
12
normal 199-bp
12
199-bp fragment
12
normal dna
8
mobilities curved
8
curved 199-bp
8

Similar Publications

Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting.

Acta Biomater

January 2025

Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:

The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

Additively Manufactured Flexible EGaIn Sensor for Dynamic Detection and Sensing on Ultra-Curved Surfaces.

Sensors (Basel)

December 2024

Sauvage Laboratory for Smart Materials, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China.

Electronic skin is widely employed in multiple applications such as health monitoring, robot tactile perception, and bionic prosthetics. In this study, we fabricated millimeter-scale electronic skin featuring compact sensing units using the Boston Micro Fabrication S130 (a high-precision additive manufacturing device) and the template removal method. We used a gallium-based liquid metal and achieved an inner channel diameter of 0.

View Article and Find Full Text PDF

We propose a simple mathematical model to describe the mechanical relaxation of cells within a curved epithelial tissue layer represented by an arbitrary curve in two-dimensional space. This model generalises previous one-dimensional models of flat epithelia to investigate the influence of curvature for mechanical relaxation. We represent the mechanics of a cell body either by straight springs, or by curved springs that follow the curve's shape.

View Article and Find Full Text PDF

Atomic Manipulation on 2D Sumanene for Precise Fermi Level Positioning in Ultrafast High-Capacity Alkali Metal Batteries.

Nano Lett

January 2025

State Key Laboratory of Structural Analysis for Industrial Equipment & School of Physics, Dalian University of Technology, Dalian 116024 People's Republic of China.

Article Synopsis
  • A sumanene monolayer with a unique Kagome-like lattice features two flat bands and two Dirac cones, which can be designed using carbon clusters.
  • First-principles simulations show that surface charge doping can effectively adjust the Fermi level between these bands, allowing for the transformation of the semiconducting monolayer into a semimetal using Li/Na/K atoms.
  • This doped sumanene exhibits high theoretical storage capacity, rapid charge capability, and exceptional structural stability, making it an attractive anode material for alkali-metal batteries.
View Article and Find Full Text PDF

Limnobacter olei sp. nov., a Novel Diesel-Degrading Bacterium Isolated from Oil-Contaminated Soil.

Curr Microbiol

January 2025

Jiangsu Longhuan Environmental Science Co. LTD, Changzhou, 213164, China.

A bacterial strain P1, capable of degrading diesel and converting thiosulfate to sulfate was isolated from an oil-contaminated soil sample. The cells were Gram-stain-negative, slightly curved rods and motile with a single polar flagellum. Growth of the strain was observed at 4-45 °C (optimum at 28 °C), at pH 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!