Guam parkinsonism-dementia complex (PDC) is a neurodegenerative tauopathy in ethnic Chamorro residents of the Mariana Islands that manifests clinically with parkinsonism as well as dementia and is characterized neuropathologically by prominent cortical neuron loss in association with extensive telencephalic neurofibrillary tau pathology. To further characterize cortical gray and white matter tau, alpha-synuclein and lipid peroxidation pathologies in Guam PDC, we examined the brains of 17 Chamorro PDC and control subjects using biochemical and immunohistological techniques. We observed insoluble tau pathology in both gray and white matter of PDC and Guam control cases, with frontal and temporal lobes being most severely affected. Using phosphorylation dependent anti-tau antibodies, abundant tau inclusions were detected by immunohistochemistry in both neuronal and glial cells of the neocortex, while less alpha-synuclein pathology was observed in more limited brain regions. Further, in sharp contrast to Alzheimer's disease (AD), levels of the lipid peroxidation product 8, 12-iso-iPF(2alpha)-VI isoprostane were not elevated in Guam PDC brains relative to controls. Thus, although the tau pathologies of Guam PDC share similarities with AD, the composite Guam PDC neuropathology profile of tau, alpha-synuclein and 8, 12-iso-iPF(2alpha)-VI isoprostane reported here more closely resembles that seen in other tauopathies including frontotemporal dementias (FTDs), which may imply that Guam PDC and FTD tauopathies share underlying mechanisms of neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-006-0053-0 | DOI Listing |
J Neurol Sci
December 2024
Graduate School of International Development, Nagoya University, Nagoya, Japan.
While rising global rates of neurodegenerative disease encourage early diagnosis and therapeutic intervention to block clinical expression (secondary prevention), a more powerful approach is to identify and remove environmental factors that trigger long-latencybrain disease (primary prevention) by acting on a susceptible genotype or acting alone. The latter is illustrated by the post-World War II decline and disappearance of Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS/PDC), a prototypical often-familial neurodegenerative disease formerly present in very high incidence on the island of Guam. Lessons learned from 75 years of investigation on the etiology of ALS/PDC include: the importance of focusing field research on the disease epicenter and patients with early-onset disease; soliciting exposure history from patients, family, and community to guide multidisciplinary biomedical investigation; recognition that disease phenotype may vary with exposure history, and that familial brain disease may have a primarily environmental origin.
View Article and Find Full Text PDFJ Neurol Sci
August 2024
Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA.
In 1992, the Committee on Neurotoxicology and Models for Assessing Risk of the National Academy of Sciences in Washington DC focused with a scientific perspective on the identification of substances with neurotoxic potential, studies of exposed populations, risk assessment, and biologic markers of disease. This Committee recommended: "all physicians should be trained to take a thorough occupational-exposure history and to be aware of other possible sources of toxic exposure". Although convened after several outbreaks of neurotoxic syndromes, clinical neurological considerations were lacking.
View Article and Find Full Text PDFActa Neuropathol
May 2024
Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively.
View Article and Find Full Text PDFActa Neuropathol Commun
February 2024
School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
Toxins (Basel)
January 2024
Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
Cetaceans are well-regarded as sentinels for toxin exposure. Emerging studies suggest that cetaceans can also develop neuropathological changes associated with neurodegenerative disease. The occurrence of neuropathology makes cetaceans an ideal species for examining the impact of marine toxins on the brain across the lifespan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!