The metal ion coordinating properties of ntam (nitrilotriacetamide) are reported. The protonation constant (pK) for ntam is 2.6 in 0.1 M NaClO(4) at 25 degrees C. Formation constants (log K(1)) in 0.1 M NaClO(4) at 25 degrees C, determined by (1)H NMR and UV-Vis spectroscopy are: Ca(II), 1.28; Mg(II), 0.4; La(III), 2.30; Pb(II), 3.69; Cd(II), 3.78; Ni(II), 2.38; Cu(II), 3.16. The measured log K(1) values for the ntam complexes are discussed in terms of the low basicity of the N-donor, as evidenced by the pK, and the effect of metal ion size on complex stability. The amide O-donors of ntam lead to the stabilization of complexes of large metal ions (Pb(II), Cd(II), La(III), Ca(II)) relative to log K1 for the NH3 complexes, while for small metal ions (Ni(II), Cu(II)) the amide O-donors lead to destabilization. This is discussed in terms of the role of chelate ring size in controlling metal ion size-based selectivity. The structures of [Pb(ntam)(NO3)2]2 (1) and [Ca2(ntam)3(H2O)2](ClO4)4.3H2O (2) are reported. For 1: triclinic, space group P1, a = 7.4411(16), b = 9.0455(19), c = 11.625(3) A, alpha = 69.976(4), beta = 79.591(4), gamma = 67.045(3) degrees, Z = 2, R = 0.0275. For 2: monoclinic, space group P2(1)/c, a = 10.485(2), b = 11.414(2), c = 38.059(8) A, beta = 92.05(3) degrees, Z = 4, R = 0.0634. Structure 1 is dimeric with two Pb atoms linked by bridging O-donors from the two ntam ligands. The coordination sphere consists of one N-donor and 3 O-donors from the ntam ligand, two O-donors from nitrates, and one bridging O-donor. The variation in bond length suggests a stereochemically active lone pair of electrons on the Pb. Structure 2 consists of two Ca(II) ions held together by 3 bridging O-donors from ntam groups. One Ca is 9-coordinate with two ntam ligands present, plus one bridging O-donor from the other Ca(II) ntam complex. The other Ca is 8-coordinate, with a single coordinated ntam, plus two coordinated H2O molecules, and two bridging O-donors from the other half of the complex. The role of M-O=C bond angles in controlling selectivity for metal ions on the basis of their size is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b512017aDOI Listing

Publication Analysis

Top Keywords

metal ion
16
o-donors ntam
16
metal ions
12
bridging o-donors
12
ntam
10
ion coordinating
8
coordinating properties
8
naclo4 degrees
8
discussed terms
8
amide o-donors
8

Similar Publications

Caliciviruses are a diverse group of non-enveloped, positive-sense RNA viruses with a wide range of hosts and transmission routes. Norovirus is the most well-known member of the ; the acute gastroenteritis caused by human norovirus (HuNoV), for example, frequently results in closures of hospital wards and schools during the winter months. One area of calicivirus biology that has gained increasing attention over the past decade is the conformational flexibility exhibited by the protruding (P) domains of the major capsid protein VP1.

View Article and Find Full Text PDF

Detection and Quantification of DNA by Fluorophore-Induced Plasmonic Current: A Novel Sensing Approach.

Sensors (Basel)

December 2024

Department of Chemistry and Biochemistry, Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt St, Baltimore, MD 21202, USA.

We report on the detection and quantification of aqueous DNA by a fluorophore-induced plasmonic current (FIPC) sensing method. FIPC is a mechanism described by our group in the literature where a fluorophore in close proximity to a plasmonically active metal nanoparticle film (MNF) is able to couple with it, when in an excited state. This coupling produces enhanced fluorescent intensity from the fluorophore-MNF complex, and if conditions are met, a current is generated in the film that is intrinsically linked to the properties of the fluorophore in the complex.

View Article and Find Full Text PDF

Building of CuO@Cu-TA@DSF/DHA Nanoparticle Targets MAPK Pathway to Achieve Synergetic Chemotherapy and Chemodynamic for Pancreatic Cancer Cells.

Pharmaceutics

December 2024

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.

With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).

View Article and Find Full Text PDF

The effect of 2-hydroxpropyl-β-cyclodextrin (2HPβCD) with or without divalent metal ions (Ca, Mg, and Zn) on the stability of dalbavancin in acetate buffer was investigated. Dalbavancin recovery from formulations with 2HPβCD and divalent metal ions after four weeks of storage at 5 °C and 55 °C was measured by RP-HPLC and HP-SEC; a longer-term study was carried out over six months at 5 °C, 25 °C, and 40 °C. Binding of 2HPβCD was characterized by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Interface Engineering of Styrenic Polymer Grafted Porous Micro-Silicon/Polyaniline Composite for Enhanced Lithium Storage Anode Materials.

Polymers (Basel)

December 2024

Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-Gu, Seongnam-Si 13120, Gyeonggi-do, Republic of Korea.

Si anode materials are promising candidates for next-generation Li-ion batteries (LIBs) because of their high capacities. However, expansion and low conductivity result in rapid performance degradation. Herein, we present a facile one-pot method for pyrolyzing polystyrene sulfonate (PSS) polymers at low temperatures (≤400 °C) to form a thin carbonaceous layer on the silicon surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!