A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cellular concentrations of glutamine synthetase in murine organs. | LitMetric

Glutamine synthetase (GS) is the only enzyme that can synthesize glutamine, but it also functions to detoxify glutamate and ammonia. Organs with high cellular concentrations of GS appear to function primarily to remove glutamate or ammonia, whereas those with a low cellular concentration appear to primarily produce glutamine. To validate this apparent dichotomy and to clarify its regulation, we determined the GS concentrations in 18 organs of the mouse. There was a >100-fold difference in GS mRNA, protein, and enzyme-activity levels among organs, whereas there was only a 20-fold difference in the GS protein:mRNA ratio, suggesting extensive transcriptional and posttranscriptional regulation. In contrast, only small differences in the GS enzyme activity : protein ratio were found, indicating that posttranslational regulation is of minor importance. The cellular concentration of GS was determined by relating the relative differences in cellular GS concentration, detected using image analysis of immunohistochemically stained tissue sections, to the biochemical data. There was a >1000-fold difference in cellular concentrations of GS between GS-positive cells in different organs, and cellular concentrations were up to 20x higher in subpopulations of cells within organs than in whole organs. GS activity was highest in pericentral hepatocytes (approximately 485 micromol.g(-1).min-(1), followed in descending order by epithelial cells in the epididymal head, Leydig cells in the testicular interstitium, epithelial cells of the uterine tube, acid-producing parietal cells in the stomach, epithelial cells of the S3 segment of the proximal convoluted tubule of the kidney, astrocytes of the central nervous tissue, and adipose tissue. GS activity in muscle amounted to only 0.4 micromol.g(-1).min(-1). Our findings confirmed the postulated dichotomy between cellular concentration and GS function.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o05-170DOI Listing

Publication Analysis

Top Keywords

cellular concentrations
16
cellular concentration
16
epithelial cells
12
cellular
8
glutamine synthetase
8
glutamate ammonia
8
cells organs
8
organs
7
cells
7
glutamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!