Diabetes mellitus increases the risk of cerebrovascular disease, the effects of hypercapnia on CBF (cerebral blood flow) and cerebrovascular reactivity during diabetes are still inconsistent. Here, we have established a new microangiographic technique using synchrotron radiation (SPring-8, Japan), which enabled us to visualize rat cerebral vessels with high spatial resolution in real time. The goal of the study presented here was to identify the effects of chronic hyperglycemia on hypercapnia-induced vascular responses (endothelium-dependent vasodilatation) and nitric oxide (NO) donor- induced vascular responses (endothelium-independent) of perforating arteries and of the deeply located large cerebral arteries. We found a significant vasodilatation of rat perforating arteries after hypercapnia with a maximum diameter of approximately 140% of baseline in normal Wistar rats. Chronic hyperglycemia impaired vasodilatation of perforating arteries in genetically diabetic GK rats. SNP (sodium nitroprusside) caused a similar vasodilatation of perforating vessels in normal and chronic hyperglycemia, indicating that endothelium-dependent vasodilatation of perforating arteries may be specifically impaired in chronic hyperglycemia. Possible impairment of endothelium-dependent vasodilatation in perforating vessels during chronic hyperglycemia may cause decreased vascular reserve capacity of perforating artery, resulting in the increased ischemic insults and cerebrovascular diseases in diabetes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chronic hyperglycemia
24
perforating arteries
20
vasodilatation perforating
16
endothelium-dependent vasodilatation
12
perforating
8
arteries hypercapnia
8
vascular responses
8
perforating vessels
8
arteries
6
chronic
6

Similar Publications

Objective:  Type 2 diabetes is a metabolic disorder characterized by insulin resistance and hyperglycemia affecting many individuals worldwide. For effective management, adherence to recommended physician visits is important, along with lifestyle modification and pharmacological interventions. Regular doctor visits can improve adherence and help prevent complications.

View Article and Find Full Text PDF

Background: Type 2 Diabetes Mellitus (T2DM) represents a major global health challenge, marked by chronic hyperglycemia, insulin resistance, and immune system dysfunction. Immune cells, including T cells and monocytes, play a pivotal role in driving systemic inflammation in T2DM; however, the underlying single-cell mechanisms remain inadequately defined.

Methods: Single-cell RNA sequencing of peripheral blood mononuclear cells (PBMCs) from 37 patients with T2DM and 11 healthy controls (HC) was conducted.

View Article and Find Full Text PDF

The coexistence of type 2 diabetes mellitus (T2DM) and chronic kidney disease (CKD) represents a significant global health challenge, contributing to substantial morbidity, mortality, and economic burden. T2DM is the leading cause of CKD, and CKD exacerbates diabetes-related complications, creating a bidirectional relationship driven by oxidative stress, inflammation, and endothelial dysfunction. Diabetic kidney disease (DKD), affecting some individuals with T2DM, accelerates progression to end-stage renal disease (ESRD) and increases cardiovascular mortality.

View Article and Find Full Text PDF

The connection between COVID-19 and DM unveils a multifaceted interplay that significantly impacts disease severity and management strategies. Initial studies reveal that people with DM had higher severity rates of COVID-19 due to the infection by SARS-CoV-2. The virus solely induces hyperglycemia and, at the same time, profoundly influences the immune and inflammatory reactions, increasing the rate of severe complications and death among diabetes patients.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a serious metabolic disorder, is a worldwide health problem due to the alarming rise in prevalence and elevated morbidity and mortality. Chronic hyperglycemia, insulin resistance, and ineffective insulin effect and secretion are hallmarks of T2DM, leading to many serious secondary complications. These include, in particular, cardiovascular disorders, diabetic neuropathy, nephropathy and retinopathy, diabetic foot, osteoporosis, liver damage, susceptibility to infections and some cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!