Phosducin and phosducin-like protein attenuate G-protein-coupled receptor-mediated inhibition of voltage-gated calcium channels in rat sympathetic neurons.

Mol Pharmacol

Laboratory of Molecular Physiology, NIH/NIAAA/DICBR, 5625 Fishers Lane, Room TS11A, MSC 9411, Bethesda, MD 20892-9411, USA.

Published: July 2006

Phosducin (PDC) has been shown in structural and biochemical experiments to bind the Gbetagamma subunit of heterotrimeric G-proteins. A proposed function of PDC and phosducin-like protein (PDCL) is the sequestration of "free" Gbetagamma from the plasma membrane, thereby terminating signaling by Gbetagamma. The functional impact of heterologously expressed PDC and PDCL on N-type calcium channel (CaV2.2) modulation was examined in sympathetic neurons, isolated from rat superior cervical ganglia, using whole-cell voltage clamp. Expression of PDC and PDCL attenuated voltage-dependent inhibition of N-type calcium channels, a Gbetagamma-dependent process, in a time-dependent fashion. Calcium current inhibition after short-term exposure to norepinephrine was minimally altered by PDC or PDCL expression. However, in the continued presence of norepinephrine, PDC or PDCL relieved calcium channel inhibition compared with control neurons. We observed similar results after activation of heterologously expressed metabotropic glutamate receptors with 100 microM L-glutamate. Neurons expressing PDC or PDCL maintained suppression of inhibition after re-exposure to agonist. Unlike other Gbetagamma sequestering proteins that abolish the short-term inhibition of Ca2+ channels, PDC and PDCL require prolonged agonist exposure before effects on modulation are realized.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.105.021394DOI Listing

Publication Analysis

Top Keywords

pdc pdcl
24
phosducin-like protein
8
calcium channels
8
sympathetic neurons
8
pdc
8
heterologously expressed
8
n-type calcium
8
calcium channel
8
pdcl
7
inhibition
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!