The separation of tetracycline and its four commoninpurities has been studied by high-speed liquid chromatography. A preliminary study of the effectiveness of ion-exchange, adsorption, liquid-liquid partition and reversed-phase ion-pair chromatography indicated that only the last method showed promise. By developing special hydrocarbon-bonded stationary phases a rapid and complete resolution of all five tetracyclines has been obtained within 10 min. Plate heights using a derivatised 18-mum partisil are in the range 0.15-0.3 mm. The method can be used to quantify the impurities in tetracycline at around the 1% level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9673(00)91215-9 | DOI Listing |
Nat Commun
January 2025
Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
Coherent Raman scattering spectroscopies have been established as a powerful tool for investigating molecular systems with high chemical specificity. The existing coherent Raman scattering techniques detect only Raman active modes, which are a part of the whole molecular vibrations. Here, we report the first observation of coherent anti-Stokes hyper-Raman scattering (CAHRS) spectroscopy, which allows measuring hyper-Raman active vibrations at high speed.
View Article and Find Full Text PDFPharmaceutics
December 2024
AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen am Rhein, Germany.
Atomization plays a key role in spray drying, a process widely used in the pharmaceutical, chemical, biological, and food and beverage industries. In the pharmaceutical industry, spray drying is particularly important in the preparation of amorphous solid dispersions, which enhance the bioavailability of active pharmaceutical ingredients when mixed with a polymer. In this study, a 3D-printed adaptation of a commercial spray dryer nozzle (PHARMA-SD PSD-1, GEA Group AG) was used to investigate the atomization of PVP-VA 64 polymer solutions under varying flow conditions using high-speed diffuse back-illumination.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China.
The high-pressure die-casting process can effectively manufacture aluminium alloy castings with complex shapes and thin wall thicknesses. However, due to the complex flow characteristics of the liquid metal during the mould-filling process, there are significant differences in the mechanical properties of different parts of the casting. This paper analyses the effect of the high-speed ram transition position on porosity and mechanical properties of Al-Si-Mn-Mg aluminium alloys in the high-pressure die-casting (HPDC) process, comparing the 1160 mm and 1200 mm positions.
View Article and Find Full Text PDFCancers (Basel)
December 2024
UofL Health-Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
Background: Over the past decade, saliva-based liquid biopsies have emerged as promising tools for the early diagnosis, prognosis, and monitoring of cancer, particularly in high-risk populations. However, challenges persist because of low concentrations and variable modifications of biomarkers linked to tumor development when compared to normal salivary components.
Methods: This study explores the application of differential scanning calorimetry (DSC)-based thermal liquid biopsy (TLB) for analyzing saliva and blood plasma samples from head and neck cancer (HNC) patients.
Nat Methods
January 2025
Instituto Gulbenkian de Ciência, Oeiras, Portugal.
The expanding scale and complexity of microscopy image datasets require accelerated analytical workflows. NanoPyx meets this need through an adaptive framework enhanced for high-speed analysis. At the core of NanoPyx, the Liquid Engine dynamically generates optimized central processing unit and graphics processing unit code variations, learning and predicting the fastest based on input data and hardware.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!