Using first principles calculations, we report for the first time that large nearly neutral aromatic molecules, such as naphthalene and anthracene, and small charge-transfer aromatic molecules, such as TCNQ and DDQ, interact more strongly with metallic single-wall carbon nanotubes (SWNTs) versus their semiconducting counterparts as the molecular orientation of DDQ is taken into account. Hence two new mechanisms for separating metallic and semiconducting SWNTs via noncovalent pi-pi stacking or charge-transfer interaction are suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja058214+DOI Listing

Publication Analysis

Top Keywords

aromatic molecules
12
charge-transfer aromatic
8
metallic single-wall
8
single-wall carbon
8
carbon nanotubes
8
selective interaction
4
interaction large
4
large charge-transfer
4
molecules metallic
4
nanotubes critical
4

Similar Publications

Aromaticity is one of the most classical concepts in the field of modern chemistry and has been employed to explain and design substances with special stability. Although the knowledge about Hückel's and Baird's rules has been well established, the understanding of Möbius aromaticity remains extremely limited. In this letter, by employing density functional theory (DFT) calculations, we demonstrated that the four-membered VIB transition metal (TM) carbide clusters possess a highly stable open-shell planar tetrameric structure and exhibit double Möbius aromaticity, which was evidenced by analyzing multiple aromaticity criteria, including the electronic, magnetic, and energetic indicators.

View Article and Find Full Text PDF

Structure identification of myricetin-phenylacetaldehyde adducts and their potential biological activities.

Food Res Int

January 2025

School of Food Science and Engineering, Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Modern Industrial Technology Research Institute, South China University of Technology, Zhongshan 528437, China. Electronic address:

Our previous research discovered that myricetin could effectively inhibit the formation of heterocyclic aromatic amines (HAAs) in cantonese baked foods by trapping phenylacetaldehyde to form adducts. However, the structure and biological activity of these adducts were still unknown. In this study, we identified two myricetin-phenylacetaldehyde adducts from cantonese mooncakes, BYQ-2 and BYQ-3, using pre-HPLC.

View Article and Find Full Text PDF

Binary solvent participation in crystals of a multi-aromatic 1,2,3-triazole.

Acta Crystallogr E Crystallogr Commun

January 2025

Oligometrics, Inc., 2510 47th Street, Suite 208, Boulder, CO, 80301, USA.

The X-ray crystal structure of a multi-aromatic substituted 1,2,3-triazole is presented, which shows an extensive three-dimensional hydrogen-bonding network involving two water mol-ecules and two aceto-nitrile mol-ecules. The structure of 4-{[(4-{[1-({[(3,4-di-meth-oxy-phen-yl)meth-yl](3-acetamido-phen-yl)carbamo-yl}meth-yl)-1-1,2,3-triazol-4-yl]meth-oxy}-3-meth-oxy-phen-yl)meth-yl]amino}-benzoic acid-aceto-nitrile-water (1/2/2), CHNO·2CHN·2HO, features amine-linked aromatic groups that have a variety functionality including a carb-oxy-lic acid, an acetamido group, and meth-oxy ethers. All -H groups, and seven out of ten heteroatoms with available lone-pair electrons, participate in hydrogen bonding, with the aid of dimer-bridging water mol-ecules and aceto-nitrile mol-ecules whose methyl groups form close contacts with oxygen atoms.

View Article and Find Full Text PDF

Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.

View Article and Find Full Text PDF

Drugs exhibit diverse binding modes and access routes in the Nav1.5 cardiac sodium channel pore.

J Gen Physiol

March 2025

Division of Biomedical Science and Biochemistry, Research School of Biology, Australian National University, Canberra, Australia.

Small molecule inhibitors of the sodium channel are common pharmacological agents used to treat a variety of cardiac and nervous system pathologies. They act on the channel via binding within the pore to directly block the sodium conduction pathway and/or modulate the channel to favor a non-conductive state. Despite their abundant clinical use, we lack specific knowledge of their protein-drug interactions and the subtle variations between different compound structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!