Plasmonic properties of supported Pt and Pd nanostructures.

Nano Lett

Department of Applied Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.

Published: April 2006

The plasmonic properties of nanodisk arrays of Pt, Pd, and, for comparison, Ag are studied over a large size and spectral range and analyzed theoretically by an electrostatic model. Pt and Pd nanodisks exhibit broad localized surface plasmons with a higher sensitivity of the plasmon to the disk aspect ratio compared to Ag. Extinction cross-sections are generally about 50% smaller for Pt and Pd. The spectral plasmon positions, line-widths, and extinction cross-sections are well reproduced by the model.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl060219xDOI Listing

Publication Analysis

Top Keywords

plasmonic properties
8
extinction cross-sections
8
properties supported
4
supported nanostructures
4
nanostructures plasmonic
4
properties nanodisk
4
nanodisk arrays
4
arrays comparison
4
comparison studied
4
studied large
4

Similar Publications

Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization.

View Article and Find Full Text PDF

A flexible cotton-based Ag/AgPO/MXene (APMX) ternary composite material was successfully synthesized, serving as a dual-function and reusable surface-enhanced Raman scattering (SERS) substrate for both sensitive detection and efficient organic dye degradation. The remarkable SERS properties of the composite can be attributed to the combined effects of electromagnetic enhancement by Ag nanoparticles (Ag NPs), charge transfer enhancement from AgPO, and the chemical enhancement mechanisms associated with MXene. When employed for the detection of crystal violet (CV), the material exhibits outstanding sensitivity, achieving a limit of detection (LOD) as low as 3.

View Article and Find Full Text PDF

Magnetic nanoparticles of Nd2Fe14B prepared by ethanol-assisted wet ball milling technique.

Sci Rep

January 2025

Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).

View Article and Find Full Text PDF

CRISPR-Cas12a-Mediated Growth of Gold Nanoparticles for DNA Detection in Agarose Gel.

ACS Sens

January 2025

Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.

The rapid, simple, and sensitive detection of nucleic acid biomarkers plays a significant role in clinical diagnosis. Herein, we develop a label-free and point-of-care approach for isothermal DNA detection through the trans-cleavage activity of CRISPR-Cas12 and the growth of gold nanomaterials in agarose gel. The presence of the target can activate CRISPR-Cas12a to cleave single-stranded DNA, thus modulating the length and number of DNA sequences that mediate the growth of gold nanoparticles (AuNPs) or gold nanorods (AuNRs).

View Article and Find Full Text PDF

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!