AI Article Synopsis

  • O(6)-Methyl-2'-deoxyguanosine (O(6)-Me-dG) is a highly mutagenic DNA modification caused by methylating agents like tobacco nitrosamines, affecting genes like K-ras.
  • AGT protein repairs O(6)-Me-dG by transferring the damaging alkyl group to itself, but previous studies indicated this process might be influenced by surrounding DNA sequence.
  • A new analytical method was developed to study AGT's repair efficiency on O(6)-Me-dG located at different positions in the K-ras gene, revealing that repair rates were consistent across various sequence placements.

Article Abstract

O(6)-Methyl-2'-deoxyguanosine (O(6)-Me-dG) is a potent mutagenic DNA adduct that can be induced by a variety of methylating agents, including tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). O(6)-Me-dG is directly repaired by the specialized DNA repair protein, O(6)-alkylguanine DNA alkyltransferase (AGT), which transfers the O(6)-alkyl group from the modified guanine to a cysteine thiol within the active site of the protein. Previous investigations suggested that AGT repair of O(6)-alkylguanines may be sequence-dependent as a result of flanking nucleobase effects on DNA conformation and energetics. In the present work, a novel high-performance/pressure liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI+-MS/MS)-based approach was developed to analyze the kinetics of AGT-mediated repair of O(6)-Me-dG adducts placed at different sites within the double-stranded DNA sequence representing codons 8-17 of the K-ras protooncogene, 5'-G1TA G2TT G3G4A G5CT G6G7T G8G9C G10TA G11G12C AAG13 AG14T-3', where G5, G6, G7, G8, G9, G10, or G11 was replaced with O(6)-Me-dG. The second guanine of K-ras codon 12 (G7 in our numbering system) is a major mutational hotspot for G --> A transitions observed in lung tumors of smokers and in neoplasms induced in laboratory animals by exposure to methylating agents. O(6)-Me-dG-containing duplexes were incubated with human recombinant AGT protein, and the reactions were quenched at specific times. Following acid hydrolysis to release purines, isotope dilution HPLC-ESI-MS/MS was used to determine the amounts of O(6)-Me-G remaining in DNA. The relative extent of demethylation for O(6)-Me-dG adducts located at G5, G6, G7, G8, G9, G10, or G11 following a 10 s incubation with AGT showed little variation as a function of sequence position. Furthermore, the second-order rate constants for the repair of O(6)-Me-dG adducts located at the first and second positions of the K-ras codon 12 (5'-G6G7T-3') were similar (1.4 x 10(7) M(-1) s(-1) vs 7.4 x 10(6) M(-1) s(-1), respectively), suggesting that O(6)-Me-dG repair by AGT is not the determining factor for K-ras codon 12 mutagenesis following exposure to methylating agents. The new HPLC-ESI-MS/MS assay developed in this work is a valuable tool which will be used to further explore the role of local sequence environment and endogenous DNA modifications in shaping mutational spectra of NNK and other methylating agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3213021PMC
http://dx.doi.org/10.1021/tx050348dDOI Listing

Publication Analysis

Top Keywords

methylating agents
16
o6-me-dg adducts
12
k-ras codon
12
dna
9
o6-alkylguanine dna
8
dna alkyltransferase
8
repair o6-me-dg
8
g10 g11
8
exposure methylating
8
adducts located
8

Similar Publications

Background: Trichoderma species, known as biocontrol agents against plant diseases, contain diverse compounds, especially terpenoids, with various bioactivities. To facilitate the exploration of bioactive secondary metabolites of Trichoderma harzianum NTU2180, the OSMAC approach MS/MS molecular networking was applied in the current study.

Results: The feature-based molecular networking (FBMN) analysis showed that T.

View Article and Find Full Text PDF

This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.

View Article and Find Full Text PDF

Cancer is one of the leading causes of morbidity and mortality worldwide. One of the primary causes of cancer development and progression is epigenetic dysregulation, which is a heritable modification that alters gene expression without changing the DNA sequence. Therefore, targeting these epigenetic changes has emerged as a promising therapeutic strategy.

View Article and Find Full Text PDF

Oxidation of dopamine can cause various side effects, which ultimately leads to cell death and contributes to Parkinson's disease (PD). To counteract dopamine oxidation, newly synthesized dopamine is quickly transported into vesicles via vesicular monoamine transporter 2 (VMAT2) for storage. VMAT2 expression is reduced in patients with PD, and studies have shown increased accumulation of dopamine oxidation byproducts and α-synuclein in animals with low VMAT2 expression.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!