Inhibition of SMAD2 expression prevents murine palatal fusion.

Dev Dyn

Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, California 90033-9062, USA.

Published: July 2006

AI Article Synopsis

  • TGF-beta 3 plays a key role in regulating the disappearance of medial edge epithelium (MEE) during the process of palatal fusion in mice.
  • SMAD2, a mediator of TGF-beta signaling, is primarily expressed in the MEE and its phosphorylation is essential for normal development and fusion, as shown by the effects of Smad2 siRNA transfection which inhibited its expression.
  • The study found that reducing SMAD2 levels led to persistent MEE cells and increased cell proliferation, indicating that endogenous SMAD2 is critical for MEE disappearance during palatal fusion.

Article Abstract

Transforming growth factor (TGF)-beta 3 is known to regulate the disappearance of murine medial edge epithelium (MEE) during palatal fusion. Our previous studies showed that SMAD2, a TGF-beta signaling mediator, was expressed and phosphorylated primarily in the MEE and that SMAD2 phosphorylation in the MEE was temporospatially regulated by TGF-beta 3. The goal of this study was to examine the requirement for SMAD2 to complete the developmental events necessary for palatal fusion. SMAD2 expression was inhibited with Smad2 siRNA transfection into palatal tissues in vitro. The results showed that Smad2 siRNA transfection resulted in the maintenance of MEE cells in the palatal midline. Western blot and immunofluorescence analyses confirmed that the endogenous SMAD2 and phospho-SMAD2 levels were reduced following siRNA transfection. The SMAD3 level was not altered by the Smad2 siRNA transfection. The persistence of the MEE and the decreased SMAD2/phospho-SMAD2 levels were coincident with increased MEE cell proliferation. Addition of exogenous TGF-beta 3 increased p-SMAD2 level but not the total SMAD2 level. Therefore, exogenous TGF-beta 3 was not able to induce p-SMAD2 enough to rescue the palatal phenotype in the Smad2 siRNA group. The results indicated that the endogenous SMAD2 level is crucial in the regulation of disappearance of MEE during palatal fusion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dvdy.20819DOI Listing

Publication Analysis

Top Keywords

palatal fusion
16
smad2 sirna
16
sirna transfection
16
smad2
11
smad2 expression
8
mee palatal
8
endogenous smad2
8
exogenous tgf-beta
8
smad2 level
8
palatal
7

Similar Publications

The role of sonic hedgehog signaling in the oropharyngeal epithelium during jaw development.

Congenit Anom (Kyoto)

December 2024

Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.

Sonic hedgehog (Shh) is expressed in the oropharyngeal epithelium, including the frontonasal ectodermal zone (FEZ), which is defined as the boundary between Shh and Fgf8 expression domains in the frontonasal epithelium. To investigate the role of SHH signaling from the oropharyngeal epithelium, we generated mice in which Shh expression is specifically deleted in the oropharyngeal epithelium (Isl1-Cre; Shh). In the mutant mouse, Shh expression was excised in the oropharyngeal epithelium as well as FEZ and ventral forebrain, consistent with the expression pattern of Isl1.

View Article and Find Full Text PDF

Cleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges.

View Article and Find Full Text PDF

Klippel-Feil syndrome (KFS) is a rare congenital condition characterized by the fusion of cervical vertebrae. It classically presents with a triad of symptoms: limited cervical range of motion, a low posterior hairline, and a short neck. Common otolaryngological manifestations include hearing loss, dysphagia, cleft palate, jaw disorders, thyroid abnormalities, and ear malformations, highlighting the importance of KFS awareness in the field of otolaryngology.

View Article and Find Full Text PDF

Myogenic fusion, primarily regulated by the Myomaker and Myomixer proteins, is essential for skeletal muscle development, yet its mechanisms remain poorly understood. This study presents the clinical and molecular details of the third and fourth reported patients with biallelic variants in MYMX, the gene that encodes Myomixer. We identified a homozygous truncating variant [c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!