In many organisms, an increasing number of proteins seem to play two or more unrelated roles. Here we report that maize sucrose synthase (SUS) is distributed in organelles not involved in sucrose metabolism and may have novel roles beyond sucrose degradation. Bioinformatics analysis predicts that among the three maize SUS isoforms, SH1 protein has a putative mitochondrial targeting peptide (mTP). We validated this prediction by the immunodetection of SUS in mitochondria. Analysis with isoform-specific antisera revealed that both SH1 and SUS1 are represented in mitochondria, although the latter lacks a canonical mTP. The SUS2 isoform is not detectable in mitochondria, despite its presence in the cytosol. In maize primary roots, the mitochondrion-associated SUS (mtSUS; which includes SH1 and SUS1) is present mostly in the root tip, indicating tissue-specific regulation of SUS compartmentation. Unlike the glycolytic enzymes that occur attached to the outside of mitochondria, SH1 and SUS1 are intramitochondrial. The low abundance of SUS in mitochondria, its high Km value for sucrose, and the lack of sucrose in mitochondria suggest that mtSUS plays a non-sucrolytic role. Co-immunoprecipitation studies indicate that SUS interacts with the voltage-dependent anion channel in an isoform-specific and anoxia-enhanced manner and may be involved in the regulation of solute fluxes into and out of mitochondria. In several plant species, at least one of the SUS proteins possesses a putative mTP, indicating the conservation of the noncatalytic function across plant species. Taken together, these observations suggest that SUS has a novel noncatalytic function in plant cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M600355200 | DOI Listing |
Ecotoxicol Environ Saf
November 2022
National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
Maize pollen is highly sensitive to heat and drought, but few studies have investigated the combined effects of heat and drought on pollen viability. In this study, pollen's structural and physiological characteristics were determined after heat, drought, and combined stressors. Furthermore, integrated metabolomic and transcriptomic analyses of maize pollen were conducted to identify potential mechanisms of stress responses.
View Article and Find Full Text PDFPlant Biotechnol J
September 2020
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
The endosperm-specific transcription factor Opaque2 (O2) acts as a central regulator for endosperm filling, but its functions have not been fully defined. Regular o2 mutants exhibit a non-vitreous phenotype, so we used its vitreous variety Quality Protein Maize to create EMS-mutagenesis mutants for screening o2 enhancers (oen). A mutant (oen1) restored non-vitreousness and produced a large cavity in the seed due to severely depleted endosperm filling.
View Article and Find Full Text PDFMetab Eng
January 2008
INRA, Université Bordeaux 1, Université Victor Segalen Bordeaux 2, UMR 619 Biologie du fruit, BP 81, 33883 Villenave d'Ornon cedex, France.
In order to understand the role of sucrose synthase (SuSy) in carbon partitioning, metabolic fluxes were analyzed in maize root tips of a double mutant of SuSy genes, sh1 sus1 and the corresponding wild type, W22. [U-(14)C]-glucose pulse labeling experiments permitted the quantification of unidirectional fluxes into sucrose, starch and cell wall polysaccharides. Isotopic steady-state labeling with [1-(13)C]-, [2-(13)C]- or [U-(13)C]-glucose followed by the quantification by (1)H-NMR and (13)C-NMR of enrichments in carbohydrates and amino acids was also performed to determine 29 fluxes through central metabolism using computer-aided modeling.
View Article and Find Full Text PDFPlanta
December 2007
Department of Agronomy, University of Florida, Gainesville, FL 32611-0680, USA.
High temperature stress-induced male sterility is a critical problem in grain sorghum (Sorghum bicolor L. Moench) that significantly compromises crop yields. Grain sorghum plants were grown season-long under ambient (30/20 degrees C, day-time maximum/night-time minimum) and high temperature (36/26 degrees C) conditions in sunlit Soil-Plant-Atmospheric-Research (SPAR) growth chambers.
View Article and Find Full Text PDFPlant Cell Physiol
July 2006
Department of Plant Biology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
Although sucrose synthase (SUS) is widely appreciated for its role in plant metabolism and growth, very little is known about the contribution of each of the SUS isoforms to these processes. Using isoform-specific antibodies, we evaluated the three known isoforms individually at the protein level. SUS1 and SUS-SH1 proteins have been studied previously; however, SUS2 (previously known as SUS3) has only been studied at the transcript level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!