Employing both null transmission ellipsometry and resonant x-ray diffraction, we confirmed the SmC*FI2-SmC* phase sequence reversal in one liquid crystal compound and specially prepared binary mixtures. This phase sequence reversal was predicted by two recent theoretical advances. Moreover, the temperature range for the SmC*FI2 phase increases significantly in the mixture suggesting that such a phase sequence may exist in other compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.097801 | DOI Listing |
Dokl Biochem Biophys
January 2025
Institute of Biomedical Problems, Russian Academy of Sciences, 123007, Moscow, Russia.
One of the most obvious manifestations of the negative impact of space flight factors on the human physiology is osteopenia. With the active development of manned space flights and the increase in the duration of humans' persistence in weightlessness, there is a growing need to understand the mechanisms of changes occurring at the cellular level involved in the replenishment of bone tissue. Using the RNA sequencing method, changes in the transcriptome profile of MMSCs were studied after a 5-day simulation of the microgravity effects.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
College of Agriculture, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, China.
QTL mapping of two RIL populations in multiple environments revealed a consistent QTL for bristle length, and combined with RNA-seq, a potential candidate gene influencing bristle length was identified. Foxtail millet bristles play a vital role in increasing yields and preventing bird damage. However, there is currently limited research on the molecular regulatory mechanisms underlying foxtail millet bristle formation, which constrains the genetic improvement and breeding of new foxtail millet varieties.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China.
Introduction: The H9N2 avian influenza virus is widely disseminated in poultry and poses a zoonotic threat, despite vaccination efforts. Mutations at residue 198 of hemagglutinin (HA) are critical for antigenic variation and receptor-binding specificity, but the underlying molecular mechanisms remain unclear. This study explores the molecular mechanisms by which mutations at the HA 198 site affect the antigenicity, receptor specificity, and binding affinity of the H9N2 virus.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China.
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65).
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
Background: Depression is a common mental disorder accompanied by gut microbiota dysbiosis, which disturbs the metabolism of the host. While diurnal oscillation of the intestinal microbiota is involved in regulating host metabolism, the characteristics of the intestinal microbial circadian rhythm in depression remain unknown. Our aim was to investigate the microbial circadian oscillation signature and related metabolic pathways in a mouse model with depression-like behaviours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!