We study, in a fully nonperturbative calculation, a dilute system of spin 1/2 interacting fermions, characterized by an infinite scattering length at finite temperatures. Various thermodynamic properties and the condensate fraction are calculated and we also determine the critical temperature for the superfluid-normal phase transition in this regime. The thermodynamic behavior appears as a rather surprising and unexpected mélange of fermionic and bosonic features. The thermal response of a spin 1/2 fermion at the BCS-BEC crossover should be classified as that of a new type of superfluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.96.090404 | DOI Listing |
Curr Oncol
January 2025
Department of Radiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany.
Breath-hold T2-weighted half-Fourier acquisition single-shot turbo spin echo (HASTE) magnetic resonance imaging (MRI) of the upper abdomen with a slice thickness below 5 mm suffers from high image noise and blurring. The purpose of this prospective study was to improve image quality and accelerate imaging acquisition by using single-breath-hold T2-weighted HASTE with deep learning (DL) reconstruction (DL-HASTE) with a 3 mm slice thickness. MRI of the upper abdomen with DL-HASTE was performed in 35 participants (5 healthy volunteers and 30 patients) at 3 Tesla.
View Article and Find Full Text PDFSmall
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
Establishing the relationship between catalytic performance and material structure is crucial for developing design principles for highly active catalysts. Herein, a type of perovskite fluoride, NHMnF, which owns strong-field coordination including fluorine and ammonia, is in situ grown on carbon nanotubes (CNTs) and used as a model structure to study and improve the intrinsic catalytic activity through heteroatom doping strategies. This approach optimizes spin-dependent orbital interactions to alter the charge transfer between the catalyst and reactants.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, University at Albany, State University of New York Albany New York 12222 USA
The chemical reduction of a pyracylene-hexa--hexabenzocoronene-(HBC)-fused nanographene TPP was investigated with K and Rb metals to reveal its multi-electron acceptor abilities. The reaction of TPP with the above alkali metals, monitored by UV-vis-NIR and H NMR spectroscopy, evidenced the stepwise reduction process. The use of different solvents and secondary ligands enabled isolation of single crystals of three different reduced states of TPP with 1, 2, and 3 electrons added to its π-system.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Materials Department, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
The insulating transition metal nitride CaCrN consists of sheets of triangular [CrN] units with symmetry that are connected via quasi-1D zigzag chains. Due to strong covalency between Cr and N, Cr ions are unusually low-spin, and = 1/2. Magnetic susceptibility measurements reveal dominant quasi-1D spin correlations with very large nearest-neighbor antiferromagnetic exchange = 340 K and yet no sign of magnetic order down to = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!