Gravitational-wave extraction from an inspiraling configuration of merging black holes.

Phys Rev Lett

Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA.

Published: March 2006

We present new ideas for evolving black holes through a computational grid without excision, which enable accurate and stable evolutions of binary black hole systems with the accurate determination of gravitational waveforms directly from the wave zone region. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and good conservation of mass-energy, with just over 3% of the system's mass converted to gravitational radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.96.111102DOI Listing

Publication Analysis

Top Keywords

black holes
16
black hole
8
black
6
gravitational-wave extraction
4
extraction inspiraling
4
inspiraling configuration
4
configuration merging
4
merging black
4
holes
4
holes ideas
4

Similar Publications

The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.

View Article and Find Full Text PDF

We demonstrate that at the rim of the photon sphere of a black hole, the quantum statistics transition takes place in any multi-particle system of indistinguishable particles, which passes through this rim to the inside. The related local departure from Pauli exclusion principle restriction causes a decay of the internal structure of collective fermionic systems, including the collapse of Fermi spheres in compressed matter. The Fermi sphere decay is associated with the emission of electromagnetic radiation, taking away the energy and entropy of the falling matter without unitarity violation.

View Article and Find Full Text PDF

The Thermodynamics of the Van Der Waals Black Hole Within Kaniadakis Entropy.

Entropy (Basel)

November 2024

Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, Tashkent 100000, Uzbekistan.

In this work, we have studied the thermodynamic properties of the Van der Waals black hole in the framework of the relativistic Kaniadakis entropy. We have shown that the black hole properties, such as the mass and temperature, differ from those obtained by using the the Boltzmann-Gibbs approach. Moreover, the deformation κ-parameter changes the behavior of the Gibbs free energy via introduced thermodynamic instabilities, whereas the emission rate is influenced by κ only at low frequencies.

View Article and Find Full Text PDF

Background: In the inflammatory process of multiple sclerosis (MS) several toxic waste products are generated. The clearance of these products might depend on the glymphatic system; however, it's preserved function in MS is uncertain. Recently, it was suggested that this 'waste clearance' system can be examined by measuring the diffusion along the perivascular space (ALPS) index.

View Article and Find Full Text PDF

We performed the first simulations of accretion onto the compact objects in the Reissner-Nordström (RN) space-time. The results obtained in general relativity are representative of those for spherically symmetric naked singularities and black holes in a number of modified gravity theories. A possible application of these calculations is to the active galactic nuclei with their powerful jets and outflows.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!