We study the dynamics of the deformation of a soft liquid-liquid interface by the optical radiation pressure of a focused cw Gaussian laser beam. We measured the temporal evolution of both the hump height and the hump curvature by direct observation and by detecting the focusing effect of the hump acting as a lens. Extending the results of Yoshitake [J. Appl. Phys. 97, 024901 (2005)] to the case of liquid-liquid interfaces and to the Bo approximately =1 regime [Bo=(omega0/lc)2, , where omega0 is the beam waist and lc the capillary length], we show that, in the Bo<<1 and Bo approximately =1 ranges, the small-amplitude deformations are correctly described by a linear hydrodynamic theory predicting an overdamped dynamics. We also study the dynamics of the large-amplitude interface deformations at the onset of optohydrodynamic instability [Phys. Rev. Lett. 90, 144503 (2003)]. Using a simple, phenomenological model for the nonlinear evolution of the hump height, we interpret the observed interface dynamics at the instability onset as the signature of an imperfect subcritical instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.73.036315 | DOI Listing |
Chemistry
December 2024
College of Chemistry and Chemical Engineering, Qingdao University, Shandong, 266071, China.
Photomechanical crystals act as light-driven material-machines that can convert the energy carried by photons into kinetic energy via shape deformation or displacement, and this capability holds a paramount significance for the development of photoactuated devices. This transformation is usually attributed to anisotropic expansion or contraction of the unit cell engendered by light-induced structural modifications that lead to accumulation and release of stress that generates a momentum, resulting in readily observable mechanical effects. Among the available photochemical processes, the photoinduced [2+2] and [4+4] reactions are known for their robustness, predictability, amenability to control with molecular and supramolecular engineering approaches, and efficiency that has already been elevated to a proof-of-concept smart devices based on organic crystals.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Amsterdam 1098XH, The Netherlands.
Photosynthetic algae play a significant role in oceanic carbon capture. However, their performance is constantly challenged by fluctuations in environmental light conditions. While phototaxis is a common strategy to cope with such fluctuations, nonmotile species must adopt alternative mechanisms to avoid light-induced damage.
View Article and Find Full Text PDFJ Phys Chem B
November 2024
Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
Photosynthetic reaction centers (RCs) serve as natural engines converting solar energy to chemical energy. Understanding the principles of efficient charge separation and light-induced electron transfer (ET) between the chlorophyll-type pigments might guide the synthesis for artificial photosynthetic systems. We present detailed insight into the dynamics at the atomic level using solid-state NMR techniques applied to the RCs of (HbRCs) and the purple bacterium (PbRCs).
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Department of Pathology.
Int J Ophthalmol
October 2024
Department of Ophthalmology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China.
Aim: To investigate the involvement of pericyte-Müller glia interaction in retinal damage repair and assess the influence of suppressing the platelet-derived growth factor receptor β (PDGFRβ) signaling pathway in retinal pericytes on photoreceptor loss and Müller glial response.
Methods: Sprague-Dawley rats were exposed to intense light to induce retinal injury. Neutralizing antibody against PDGFRβ were deployed to block the signaling pathway in retinal pericytes through intravitreal injection.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!