A cluster of three genes involved in D-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis D-xylose isomerase (68% and 77%, respectively), and to E. coli D-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment D-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of D-xylose isomerases of different bacteria suggests that L. pentosus D-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli D-xylose isomerase and not to a second similarity group comprising D-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5'-xylR (1167 bp, repressor) - xylA (1350 bp, D-xylose isomerase) - xylB (1506 bp, D-xylulose kinase) - 3' is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00290664DOI Listing

Publication Analysis

Top Keywords

xylose genes
20
d-xylose isomerase
16
d-xylose
9
genes
8
three genes
8
genes involved
8
involved d-xylose
8
d-xylose catabolism
8
lactobacillus pentosus
8
d-xylulose kinase
8

Similar Publications

The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.

View Article and Find Full Text PDF

Recent research has revealed the calcium signaling significance in the production of cellulases in . While vacuoles serve as the primary calcium storage within cells, the function of vacuolar calcium transporter proteins in this process remains unclear. In this study, we conducted a functional characterization of four vacuolar calcium transport proteins in .

View Article and Find Full Text PDF

Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae.

Appl Microbiol Biotechnol

December 2024

National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China.

The halotolerant yeast Scheffersomyces spartinae, commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S.

View Article and Find Full Text PDF

Cellulosic biomass hydrolysates are rich in glucose and xylose, but most microorganisms, including , are unable to utilize xylose effectively. To address this limitation, we engineered a strain optimized for xylose metabolism through the xylose oxidoreductase pathway and promoter optimization. A promoter library with varying strengths was used to fine-tune the expression levels of the , , and genes, resulting in a strain with a strong promoter for and weaker promoters for and .

View Article and Find Full Text PDF

High-Level Production of Nicotinamide Mononucleotide by Engineered .

J Agric Food Chem

December 2024

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.

Nicotinamide mononucleotide (NMN), a key precursor of NAD, is a promising nutraceutical due to its excellent efficacy in alleviating aging and disease. The bioproduction of NMN faces challenges related to incomplete metabolic engineering and insufficient metabolic flux. Here, we constructed an NMN synthesis pathway in BW25113 by deleting the competitive pathway genes and introducing three heterologous genes encoding the key enzymes nicotinamide phosphoribosyltransferase (NAMPT), phosphoribosyl pyrophosphate synthetase and an NMN transporter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!