The pharmaceutical industry's core business is the innovation, development and marketing of new drugs. Pharmacogenetic (PG) testing and technology has the potential to increase a drug's value in many ways. A critical issue for the industry is whether products in development should be teamed with genetic tests that could segment the total population into responders and non-responders. In this paper we use a cost-effectiveness framework to model the strategic decision-making considerations by pharmaceutical manufacturers as they relate to drug development and the new technology of PG (the science of using genetic markers to predict drug response). In a simple, static, one-period model we consider three drug development strategies: a drug is exclusively developed and marketed to patients with a particular genetic marker; no distinguishing among patients based on the expression of a genetic marker is made (traditional approach); and a strategy whereby a drug is marketed to patients both with and without the genetic marker but there is price discrimination between the two subpopulations. We developed three main principles: revenues under a strategy targeting only the responder subpopulation will never generate more revenue than that which could have been obtained under a traditional approach; total revenues under a targeted PG strategy will be less than that under a traditional approach but higher than a naive [corrected] view would believe them to be; and a traditional [corrected] approach will earn the same total revenues as a price discrimination strategy, assuming no intermarket arbitrage. While these principles relate to the singular (and quite narrow) consideration of drug revenues, they may nevertheless partially explain why PG is not being used as widely as was predicted several years ago when the technology first became available, especially in terms of pharmaceutical manufacturer-developed tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2165/00019053-200624040-00004 | DOI Listing |
BMC Immunol
January 2025
Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.
Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).
Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.
Mol Genet Genomics
January 2025
Department of Molecular Phytopathology and Biotechnology, Institute of Phytopathology, Christian-Albrechts-University of Kiel, 24118, Kiel, Germany.
Brassica villosa is characterized by its dense hairiness and high resistance against the fungal pathogen Sclerotinia sclerotiorum. Information on the genetic and molecular mechanisms governing trichome development in B. villosa is rare.
View Article and Find Full Text PDFNat Microbiol
January 2025
Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
As plant-based diets gain traction, interest in their impacts on the gut microbiome is growing. However, little is known about diet-pattern-specific metagenomic profiles across populations. Here we considered 21,561 individuals spanning 5 independent, multinational, human cohorts to map how differences in diet pattern (omnivore, vegetarian and vegan) are reflected in gut microbiomes.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Institute of Science Tokyo, Yokohama, Japan.
The unicellular red alga Cyanidioschyzon merolae is a eukaryotic photosynthetic model organism used for basic and applied cell biology studies. Its nuclear genome can be modified by homologous recombination with exogenously introduced DNA. The comparison of mutants with isogenic strains is critical for reliable genetic analyses; however, this has been impossible thus far.
View Article and Find Full Text PDFAm J Clin Oncol
November 2024
Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY.
Breast and prostate cancer are among the most commonly diagnosed cancers worldwide. Recent advances in tumor sequencing and gene studies have led to a paradigm shift from treatment centered on the type of tumor to therapy more focused on specific immune phenotype markers and molecular alterations. In this review, we discuss the utility and function of talazoparib concerning prostate cancer treatment and summarize recent and planned clinical trials on talazoparib.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!