Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a nonselective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids: biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged vanilloids, Nb-VNA and Nv-VNA, are photoreleased with quantum efficiency of 0.13 and 0.041, respectively. Under flash photolysis conditions, photorelease of Nb-VNA and Nv-VNA is 95% complete in approximately 40 micros and approximately 125 micros, respectively. Through 1-photon excitation with ultraviolet light (360 nm), or 2-photon excitation with red light (720 nm), the caged vanilloids can be photoreleased in situ to activate TRPV1 receptors on nociceptive neurons. The consequent increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) can be visualized by laser-scanning confocal imaging of neurons loaded with the fluorescent Ca(2+) indicator, fluo-3. Stimulation results from TRPV1 receptor activation, because the response is blocked by capsazepine, a selective TRPV1 antagonist. In Ca(2+)-free extracellular medium, photoreleased vanilloid can still elevate [Ca(2+)](i), which suggests that TRPV1 receptors also reside on endomembranes in neurons and can mediate Ca(2+) release from intracellular stores. Notably, whole-cell voltage clamp measurements showed that flash photorelease of vanilloid can activate TRPV1 channels in <4 ms at 22 degrees C. In combination with 1- or 2-photon excitation, caged vanilloids are a powerful tool for probing morphologically distinct structures of nociceptive sensory neurons with high spatial and temporal precision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2536571PMC
http://dx.doi.org/10.1021/bi052082fDOI Listing

Publication Analysis

Top Keywords

vanilloid ligands
12
trpv1 receptors
12
nociceptive neurons
12
caged vanilloids
12
2-photon excitation
8
nervous system
8
nb-vna nv-vna
8
activate trpv1
8
trpv1
7
neurons
5

Similar Publications

Advances in the Study for Modulators of Transient Receptor Potential Vanilloid (TRPV) Channel Family.

Curr Top Med Chem

January 2025

School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, PR China.

Transient receptor potential vanilloid (TRPV) channels are a member of the TRP superfamily, which consists of six proteins and is expressed in many neuronal and non-neuronal cells. Among them, TRPV1-4 are non-selective cation channels that are highly sensitive to temperature changes, while TRPV5-6 are channels that are highly selective to Ca2+. These cation channels have attracted great interest academically, especially from a pharmacological perspective.

View Article and Find Full Text PDF

Mas-related G protein-coupled receptor b2 (Mrgprb2) binding to its cationic endogenous and exogenous ligands induces mast cell degranulation and promotes inflammation in mice. However, the physiological roles of its human homologue MRGPRX2 remain unclear. Here we aimed to elucidate the mechanisms by which MRGPRX2 regulates vascular permeability, and generated MRGPRX2 knock-in (MRGPRX2-KI) and Mrgprb2 knockout (Mrgprb2-KO) mice.

View Article and Find Full Text PDF

Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats.

Cancer Biol Ther

December 2024

Department of Integrated Traditional Chinese and Western Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP).

View Article and Find Full Text PDF

The cumulative effect of compound heterozygous variants in TRPV3 caused Olmsted syndrome.

J Dermatol Sci

December 2024

Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China. Electronic address:

Background: Olmsted syndrome (OS) is a rare genodermatosis predominantly inherited in an autosomal dominant manner, typically arising from gain-of-function (GOF) variants in the transient receptor potential channel vanilloid 3 (TRPV3) gene.

Objective: This study aims to investigate potential mechanisms underlying OS in two cases presenting with an autosomal recessive inheritance pattern.

Methods: Next-generation sequencing panel was employed to identify TRPV3 variants.

View Article and Find Full Text PDF

Oligomeric rearrangement may regulate channel activity.

Biophys Rep

October 2024

State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300350, China.

Channels are typically gated by several factors, including voltage, ligand and mechanical force. Most members of the calcium homeostasis modulator (CALHM) protein family, large-pore ATP release channels, exist in different oligomeric states. Dynamic conversions between CALHM1 heptamers and octamers to gate the channel were proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!