Hfq is a RNA-binding protein in Escherichia coli that plays an essential role in post-transcriptional regulation of mRNAs by facilitating pairing of noncoding RNAs (ncRNAs) to mRNA target sites. Recent work has provided evidence that E. coli Hfq has two distinct RNA-binding surfaces. In this study, a comparative sequence-structure analysis of hfq genes in bacterial genomes was employed to identify conserved residues that may be involved in binding RNA. A covariance of residue properties at neighboring positions 12 and 39 and conserved surface residues with high propensities at binding sites of RNA-binding proteins suggested several sites for Hfq-RNA interactions. On the basis of these predictions, eight mutant Hfq proteins were produced and their interactions were examined with the 38 nucleotide (nt) domain II of DsrA ncRNA (DsrA(DII)) and A(18) by a gel-mobility shift assay, fluorescence anisotropy, and fluorescence quenching. Mutations on the proximal surface of Hfq had a small affect on Hfq binding to A(18) (

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0523613DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli hfq
8
hfq
7
hfq binds
4
binds a18
4
a18 dsra
4
dsra domain
4
domain hfq6/rna
4
hfq6/rna stoichiometry
4
stoichiometry surface
4

Similar Publications

Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life.

View Article and Find Full Text PDF

Calcination-Induced Tight Nano-Heterointerface for Highly Effective Eradication of Rib Fracture-Related Infection by Near-Infrared Irradiation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.

Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.

View Article and Find Full Text PDF

Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.

View Article and Find Full Text PDF

Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.

View Article and Find Full Text PDF

Adjuvants are crucial for maintaining specific, protective, and long-lasting immunity. Here, we aimed to evaluate the antigenic and immunogenic activity of a recombinant form of the S1 domain of the Spike protein, associated with biogenic silver nanoparticles (bio-AgNP) and Alhydrogel as an alternative and conventional adjuvant, respectively, for a SARS-CoV-2 subunit vaccine. We produced and evaluated the antigenicity of the recombinant S1 (rS1) protein by testing its recognition by antibodies present in SARS-CoV-2 positive human serum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!