During radiation therapy with an ion beam, the production of secondary particles like neutrons, protons and heavier ions contribute to the dose delivered to tumour and healthy tissues outside the treated volume. Also, the secondary particles leaving the patient are of interest for radiation background around the ion-therapy facility. Calculations of secondary particle production and the dose absorbed by water, soft tissue and a multi-material phantom simulating the heterogeneous media of the patient body were performed for protons, helium, lithium and carbon ions in the energy range up to 400 MeV u(-1). The Monte Carlo code SHIELD-HIT for transport of protons and light ions in tissue-like media was used in these studies. The neutron ambient dose-equivalent, H*(10), was determined for neutrons leaving the water phantom irradiated with different light ion beams. The comparison of calculated secondary particle production in the water and PMMA phantoms irradiated with helium and carbon ions shows satisfactory agreement with experimental data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/nci023 | DOI Listing |
Radiat Res
January 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.
View Article and Find Full Text PDFPharmaceutics
January 2025
School of Medicine and Population Health, The University of Sheffield, Barber House, Sheffield S10 2HQ, UK.
: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.
pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.
To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Lung Biology, Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden.
Particulate matter (PM) is a major component of ambient air pollution. PM exposure is linked to numerous adverse health effects, including chronic lung diseases. Air quality guidelines designed to regulate levels of ambient PM are currently based on the mass concentration of different particle sizes, independent of their origin and chemical composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!