Use-dependent declines of Na+ currents in myelinated frog nerve fibres were measured during a train of depolarizing pulses in solutions containing tetrodotoxin (TTX) or saxitoxin (STX). The following effects of external monovalent (Na+), divalent (Ca2+, Mg2+) and trivalent (La3+) cations on use dependence were found: Increasing the Ca2+ concentration from 2 to 8 mM shifts its voltage dependence by 20 mV whereas no significant use-dependent decline occurred at 0.2 mM Ca2+. Doubling the external Na+ concentration in 0.2 mM Ca2+ solutions did not initiate phasic block. External Mg2+ ions induced a smaller, and La3+ ions a larger, use dependence. The time constants of the current decline were 4-fold greater in 1.08 mM La3+. The static block of Na+ currents by La3+ could be directly demonstrated by the relief of block during a train of pulses. The results are qualitatively explained by a toxin binding site at the Na+ channel whose affinity for TTX or STX depends on 1) the gating conformation of the channel, probably the inactivation and ii) the occupancy of a blocking site by di- or trivalent external cations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01561136DOI Listing

Publication Analysis

Top Keywords

na+ currents
8
na+
5
use-dependent block
4
block tetrodotoxin
4
tetrodotoxin saxitoxin
4
saxitoxin frog
4
frog ranvier
4
ranvier nodes
4
nodes extrinsic
4
extrinsic influence
4

Similar Publications

Background: Recurrent early pregnancy loss [rEPL] is a traumatic experience, marked by feelings such as grief and depression, and often anxiety. Despite this, the psychological consequences of rEPL are often overlooked, particularly when considering future reproductive health or approaching subsequent pregnancies. The SARS-CoV-2 pandemic led to significant reconfiguration of maternity care and a negative impact on the perinatal experience, but the specific impact on women's experience of rEPL has yet to be explored.

View Article and Find Full Text PDF

Ion beam induced secondary electron tomography of acrylonitrile-styrene-acrylate/polycarbonate polymer blends for fused filament fabrication and injection moulding.

Sci Rep

January 2025

Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Orgánica, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510, Puerto Real, Cádiz, Spain.

Polymer blending is an interesting strategy to broaden the combination of properties available for a variety of applications. To understand the behaviour of the new materials obtained as well as the influence of the fabrication parameters used, methods to analyse the distribution of polymers in the blend with resolution below the micrometer are required. In this work, we demonstrate the capability of focused ion beam (FIB) tomography to provide 3D information of the polymer distribution in objects obtained by blending acrylonitrile-styrene-acrylate (ASA) with polycarbonate (PC) (50 wt%), fabricated by Fused Filament Fabrication (FFF) and by Injection Moulding (IM).

View Article and Find Full Text PDF

Strategies and Prospects for Engineering a Stable Zn Metal Battery: Cathode, Anode, and Electrolyte Perspectives.

Acc Chem Res

January 2025

Department of Chemistry, Shanghai Key Laboratory of Catalysis and Innovative Materials, Center of Chemistry for Energy Materials Shanghai, Fudan University, Shanghai 200433, PR China.

ConspectusZinc metal batteries (ZMBs) appear to be promising candidates to replace lithium-ion batteries owing to their higher safety and lower cost. Moreover, natural reserves of Zn are abundant, being approximately 300 times greater than those of Li. However, there are some typical issues impeding the wide application of ZMBs.

View Article and Find Full Text PDF

Mg-B-O Coated P2-Type Hexagonal NaMnNiO as a High-Performance Cathode for Sodium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion, School of Chemistry, Xiangtan University, Xiangtan 411105, China.

P2-type NaMnNiO as the cathode for sodium-ion batteries, has a relatively high theoretical specific capacity, but its unstable crystal structure and undesirable phase transitions lead to rapid capacity decay. In this work, Mg-B-O coated NaMnNiO microspheres have been synthesized via a liquid-phase method based on solvothermal synthesized NaMnNiO. The Mg-B-O coating layer significantly improves the electrochemical performance, including specific capacity, rate capability, and cycle stability.

View Article and Find Full Text PDF

Introduction: Smoking behaviors can be quantified using various indices. Previous studies have shown that these indices measure and predict health risks differently. Additionally, the choice of measure differs depending on the health outcome of interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!