Ca signalling is central to many diverse functions of astrocytes. Of the numerous proteins involved in Ca homeostasis, the Na(+)/Ca(2+) exchanger is of particular importance in signalling regulation. We have shown that Ca signaling is dramatically remodelled in astrocytes by periods of chronic hypoxia, in part by inhibition of Na(+)/Ca(2+) exchanger. Here, we demonstrate that bepridil-sensitive Ca extrusion (indicative of Na(+)/Ca(2+) exchanger activity) is suppressed following 24 h hypoxia (2.5 or 1% O2) owing to a loss of Na(+)/Ca(2+) exchanger expression, as determined using immunocytochemistry and Western blots. Hypoxic Na(+)/Ca(2+) exchanger 1 inhibition occurs at the level of transcription, as mRNA for Na(+)/Ca(2+) exchanger 1 was significantly suppressed by hypoxia. Our results show hypoxia perturbs Ca homeostasis in astrocytes via the suppression of Na(+)/Ca(2+) exchanger 1 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00001756-200604240-00018 | DOI Listing |
Membranes (Basel)
January 2025
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan; Center for Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan. Electronic address:
In this study, we aimed to develop ion-responsive and biocompatible alginate-capped nanoceria (Ce-ALG) for β-1,3-glucan (i.e., wound healing agent) delivery and corneal abrasion (CA) treatment.
View Article and Find Full Text PDFRSC Adv
January 2025
Electronic Material Research Center, Northwest Institute for Nonferrous Metal Research Xi'an 710016 China.
Potassium is a harmful impurity in the rhenium sinter, which adversely affects its mechanical properties by significantly reducing the density of sintered rhenium. Cationic resin is a promising material for potassium removal. In this study, the strong acid cationic exchange resin C160H was pretreated with an HNO solution to enhance its performance in potassium removal.
View Article and Find Full Text PDF, a calciphilic species native to the mountainous regions of Southwest China, is renowned for its high vitamin C and bioactive components, making it valuable for culinary and medicinal uses. This species exhibits remarkable tolerance to the high-calcium conditions typical of karst terrains. However, the underlying mechanisms of this calcium resilience remain unclear.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Geography, University of Sindh, Jamshoro, Sindh, Pakistan.
This study applied integrated statistical approaches, including GIS mapping and the water quality index (WQI), to assess the quality of water, soil, and plant samples which collected from Darawat Dam, Sindh, Pakistan. The samples were analyzed for physicochemical parameters and metal analyses. Results of cations in water samples were in the range Na 26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!