The Petunia hybrida genes ANTHOCYANIN1 (AN1) and AN2 encode transcription factors with a basic-helix-loop-helix (BHLH) and a MYB domain, respectively, that are required for anthocyanin synthesis and acidification of the vacuole in petal cells. Mutation of PH4 results in a bluer flower color, increased pH of petal extracts, and, in certain genetic backgrounds, the disappearance of anthocyanins and fading of the flower color. PH4 encodes a MYB domain protein that is expressed in the petal epidermis and that can interact, like AN2, with AN1 and the related BHLH protein JAF13 in yeast two-hybrid assays. Mutation of PH4 has little or no effect on the expression of structural anthocyanin genes but strongly downregulates the expression of CAC16.5, encoding a protease-like protein of unknown biological function. Constitutive expression of PH4 and AN1 in transgenic plants is sufficient to activate CAC16.5 ectopically. Together with the previous finding that AN1 domains required for anthocyanin synthesis and vacuolar acidification can be partially separated, this suggests that AN1 activates different pathways through interactions with distinct MYB proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1456866 | PMC |
http://dx.doi.org/10.1105/tpc.105.034041 | DOI Listing |
To inhibit endocytic entry of some viruses, cells promote acidification of endosomes by expressing the short isoform of human nuclear receptor 7 (NCOA7) which increases activity of vacuolar ATPase (V-ATPase). While we found that HIV-1 infection of primary T cells led to acidification of endosomes, NCOA7 levels were only marginally affected. Contrastingly, levels of the 50 kDa form of the sodium/hydrogen exchanger 6 (NHE6) were greatly reduced.
View Article and Find Full Text PDFiScience
January 2025
Department of Experimental Medicine, University of Genova, Viale Benedetto XV/3, 16132 Genoa, Italy.
The vacuolar ATPase (v-ATPase) is essential for acidification of intracellular organelles, including synaptic vesicles. Its activity is controlled by cycles of association and dissociation of the ATP hydrolysis (V) and proton transport (V) multi-protein subunits. Mutations in genes coding for both v-ATPase subunits and TBC1D24 cause neurodevelopmental disorders with overlapping syndromes; therefore, it is important to investigate their potentially interrelated functions.
View Article and Find Full Text PDFAutophagy
January 2025
State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China.
PLoS Pathog
January 2025
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland United States of America.
Autophagy plays a crucial role in the host response to Mycobacterium tuberculosis (Mtb) infection, yet the dynamics and regulation of autophagy induction on Mtb-containing vacuoles (MCVs) remain only partially understood. We employed time-lapse confocal microscopy to investigate the recruitment of LC3B (LC3), a key autophagy marker, to MCVs at the single cell level with our newly developed workflow for single cell and single MCV tracking and fluorescence quantification. We show that approximately 70% of MCVs exhibited LC3 recruitment but that was lost in about 40% of those MCVs.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO.
Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!