We report on the development of the F64L/S65T/T203Y/L231H GFP mutant (E2GFP) as an effective ratiometric pH indicator for intracellular studies. E2GFP shows two distinct spectral forms that are convertible upon pH changes both in excitation and in emission with pK close to 7.0. The excitation of the protein at 488 and 458 nm represents the best choice in terms of signal dynamic range and ratiometric deviation from the thermodynamic pK. This makes E2GFP ideally suited for imaging setups equipped with the most widespread light sources and filter settings. We used E2GFP to determine the average intracellular pH (pH(i)) and spatial pH(i) maps in two different cell lines, CHO and U-2 OS, under physiological conditions. In CHO, we monitored the evolution of the pH(i) during mitosis. We also showed the possibility to target specific subcellular compartments such as nucleoli (by fusing E2GFP with the transactivator protein of HIV, (Tat) and nuclear promyelocytic leukemia bodies (by coexpression of promyelocytic leukemia protein).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1432127 | PMC |
http://dx.doi.org/10.1529/biophysj.105.074708 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Beijing Institute of Technology, School of Chemistry and Chemical Engineering, CHINA.
Carbene-metal-amide (CMA) complexes have diverse applications in luminescence, imaging and sensing. In this study, we designed and synthesized a series of CMA complexes, which were subsequently doped into a PMMA host. These materials demonstrate light-induced dynamic phosphorescence, attributed to their long intrinsic triplet state lifetime (τP,int, in the μs-ms scale), high intersystem crossing (ISC) rate constant (kISC, up to 107 s-1), and bright phosphorescence.
View Article and Find Full Text PDFJ Fluoresc
January 2025
School of Science, Jiangnan University, Wuxi, 214122, China.
In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Material Engineering, Lyuliang University, Lyuliang, 033000, P. R. China.
Innovative double-emission carbon dots (DE-CDs) were synthesized via a one-step hydrothermal method using fennel and m-phenylenediamine (m-PD) as precursors. These DE-CDs exhibited dual emission wavelengths at 432 and 515 nm under different excitations, making them highly versatile for fluorescence-based applications. The fluorescence of the DE-CDs was efficiently quenched by tetracycline (TC) through the inner filter effect (IFE), allowing for the construction of a sensitive dual-response fluorescent sensor.
View Article and Find Full Text PDFACS Sens
January 2025
Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
Over recent years, the LUMinescent AntiBody Sensor (LUMABS) system, utilizing bioluminescence resonance energy transfer (BRET), has emerged as a highly effective method for antibody detection. This system incorporates NanoLuc (Nluc) as the donor and fluorescent protein (FP) as the acceptor. However, the limited Stokes shift of FP poses a challenge, as it leads to significant spectral cross-talk between the excitation and emission spectra.
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China.
Photon emission may be continuously produced from mechanical work through self-recoverable mechanoluminescence (ML). Significant progress has been made in high-performance ML materials in the past decades, but the rate-dependent ML kinetics remains poorly understood. Here, we have conducted systematic studies on the self-recoverable ML of Mn-doped SrZnOS (SrZnOS: Mn) under rapid compression up to ~10 GPa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!