AI Article Synopsis

  • Mitochondrial gene order serves as a valuable phylogenetic marker in metazoan animals, revealing unique characteristics shared within monophyletic groups.
  • Two deep-sea grenadiers, Squalogadus modificatus and Trachyrincus murrayi, exhibit an unusually identical gene order despite significant differences in their external morphologies, leading them to be categorized into different subfamilies.
  • Phylogenetic analysis confirmed that these two species form a monophyletic group, challenging older morphology-based hypotheses and demonstrating that gene order can provide new insights into evolutionary relationships within Macrouridae.

Article Abstract

The gene order of mitochondrial genomes (mitogenomes) has been employed as a useful phylogenetic marker in various metazoan animals, because it may represent uniquely derived characters shared by members of monophyletic groups. During the course of molecular phylogenetic studies of the order Gadiformes (cods and their relatives) based on whole mitogenome sequences, we found that two deep-sea grenadiers (Squalogadus modificatus and Trachyrincus murrayi: family Macrouridae) revealed a unusually identical gene order (translocation of the tRNA(Leu (UUR))). Both are members of the same family, although their external morphologies differed so greatly (e.g., round vs. pointed head) that they have been placed in different subfamilies Macrouroidinae and Trachyrincinae, respectively. Additionally, we determined the whole mitogenome sequences of two other species, Bathygadus antrodes and Ventrifossa garmani, representing a total of four subfamilies currently recognized within Macrouridae. The latter two species also exhibited gene rearrangements, resulting in a total of three different patterns of unique gene order being observed in the four subfamilies. Partitioned Bayesian analysis was conducted using available whole mitogenome sequences from five macrourids plus five outgroups. The resultant trees clearly indicated that S. modificatus and T. murrayi formed a monophyletic group, having a sister relationship to other macrourids. Thus, monophyly of the two species with disparate head morphologies was corroborated by two different lines of evidence (nucleotide sequences and gene order). The overall topology of the present tree differed from any of the previously proposed, morphology-based phylogenetic hypotheses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2006.02.014DOI Listing

Publication Analysis

Top Keywords

gene order
16
mitogenome sequences
12
sequences gene
8
sequences
5
gene
5
order
5
round pointed-head
4
pointed-head grenadier
4
grenadier fishes
4
fishes actinopterygii
4

Similar Publications

The superfamily Ascaridoidea are parasitic nematodes in vertebrates, including birds and humans. In order to investigate the presence and distribution of these parasitic nematodes in birds acting as the definitive host, 157 birds of 64 bird species belonging to 16 orders were collected and necropsied in the Kızılırmak Delta area in the Bafra district of Samsun province. The parasites collected were fixed in 70% ethyl alcohol and identified under a light microscope, and morphologically important regions were photographed for identification.

View Article and Find Full Text PDF

Ecological and anthropogenic effects on the genomic diversity of lemurs in Madagascar.

Nat Ecol Evol

December 2024

IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.

Ecological variation and anthropogenic landscape modification have had key roles in the diversification and extinction of mammals in Madagascar. Lemurs represent a radiation with more than 100 species, constituting roughly one-fifth of the primate order. Almost all species of lemurs are threatened with extinction, but little is known about their genetic diversity and demographic history.

View Article and Find Full Text PDF

Xeroderma pigmentosum group C (XPC) is a versatile protein crucial for sensing DNA damage in the global genome nucleotide excision repair (GG-NER) pathway. This pathway is vital for mammalian cells, acting as their essential approach for repairing DNA lesions stemming from interactions with environmental factors, such as exposure to ultraviolet (UV) radiation from the sun. Loss-of-function mutations in the XPC gene confer a photosensitive phenotype in XP-C patients, resulting in the accumulation of unrepaired UV-induced DNA damage.

View Article and Find Full Text PDF

Osteoporosis is well noted to be a universal ailment that realization impaired bone mass and micro architectural deterioration thus enhancing the probability of fracture. Despite its high incidence, its management remains highly demanding because of the multifactorial pathophysiology of the disease. This review highlights recent findings in the management of osteoporosis particularly, gene expression and hormonal control.

View Article and Find Full Text PDF

Gene therapy for sickle cell disease: recent advances, clinical trials and future directions.

Cytotherapy

December 2024

Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA.

Sickle cell disease (SCD) is the most common inherited blood disorder worldwide, impacting millions and imposing severe healthcare challenges, particularly in resource-limited regions. Current treatments have variable efficacy and require lifelong adherence. Allogeneic Hematopoietic Stem Cell Transplantation can be curative but comes with significant side effects and limited donor availability limits its widespread applicability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!