Sef (similar expression to fgf genes) is a member of the fibroblast growth factor (FGF) synexpression group that negatively regulates FGF receptor (FGFR) signaling in zebrafish during early embryonic development and in mammalian cell culture systems. The mechanism by which Sef exerts its inhibitory effect remains controversial. It has been reported that Sef functions either through binding to and inhibiting FGFR1 activation or by acting downstream of FGF receptors at the level of MEK/ERK kinases. In both cases, the intracellular domain of Sef was found to play a role in the inhibitory function of Sef. Here we demonstrated that both extracellular and transmembrane domains of Sef contributed to Sef-mediated negative regulation of FGF signaling. In fact, over-expression studies in NIH3T3 cells showed that a truncated mutant of Sef, which lacks the intracellular domain (SefECTM), exerted the inhibitory activity on FGF signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent activation of the Raf/MEK/ERK signaling cascade. We also showed that SefECTM associated with FGFR1, and inhibited FGF-induced ERK activation in HEK293T cells. Furthermore, we demonstrated that the over-expression of SefECTM was able to inhibit the function of a constitutively activated form of FGFR1, FGFR1-C289R, but not FGFR1-K562E. Finally, we found that SefECTM reduced cell viability when over-expressed in human umbilical vein endothelial cells (HUVEC). These data provide additional insight into the structure-activity relationship in the mechanism of inhibitory action of Sef on FGFR1-mediated signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2006.03.001 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
December 2024
Curtin University, Curtin Medical Research Institute (Bentley, WA, AUSTRALIA).
Physical activity improves myocardial structure, function and resilience via complex, incompletely defined mechanisms. We explored effects of 1-2 wks swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two wks forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P<0.
View Article and Find Full Text PDFDevelopment
January 2025
Center for Craniofacial Molecular Biology, Department of Biomedical Sciences, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA.
The calvarial bones of the infant skull are linked by transient fibrous joints known as sutures and fontanelles, which are essential for skull compression during birth and expansion during postnatal brain growth. Genetic conditions caused by pathogenic variants in FGFR2, such as Apert, Pfeiffer, Crouzon syndromes, result in calvarial deformities due to premature suture fusion and a persistently open anterior fontanelle (AF). In this study we investigated how Fgfr2 regulates AF closure by leveraging mouse genetics and single-cell transcriptomics.
View Article and Find Full Text PDFToxics
November 2024
The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.
Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.
View Article and Find Full Text PDFCells
December 2024
Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden.
The human heart regenerates slowly through life, but how new cells are generated is mostly unknown. The atrioventricular junction (AVj) has been indicated as a potential stem cell niche region. Little is known about the protein composition of the human AVj.
View Article and Find Full Text PDFBiomolecules
December 2024
Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
Fibroblast Growth Factors (FGFs) and their cognate receptors, FGFRs, play pivotal roles in a plethora of biological processes, including cell proliferation, differentiation, tissue repair, and metabolic homeostasis. This review provides a comprehensive overview of FGF-FGFR signaling pathways while highlighting their complex regulatory mechanisms and interconnections with other signaling networks. Further, we briefly discuss the FGFs involvement in developmental, metabolic, and housekeeping functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!