Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The phytohormone ethylene is a principal modulator in many aspects of plant life, including various mechanisms by which plants react to pathogen attack. Induced ethylene biosynthesis and subsequent intracellular signaling through a single conserved pathway have been well characterized. This leads to a cascade of transcription factors consisting of primary EIN3-like regulators and downstream ERF-like transcription factors. The latter control the expression of various effector genes involved in various aspects of systemic induced defense responses. Moreover, at this level significant cross-talk occurs with other defense response pathways controlled by salicylic acid and jasmonate, eventually resulting in a differentiated disease response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.phyto.44.070505.143440 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!