Galantamine (GAL) is a selective, competitive and reversible acetylcholinesterase (AChE) inhibitor, which increases the activity of the cholinergic system and hence gives rise to an improvement of cognitive functions in patients suffering from dementia of Alzheimer type. L-Carnitine (CAR) is a natural component of the mammalian tissue and is known to increase penetration of some chemical compounds/groups across biological membranes. The aim of this study was to evaluate the influence of pretreatment with CAR on AChE inhibition caused by GAL in selected brain parts in rat (basal ganglia, septum, frontal cortex, hippocampus) and in hypophysis, which does not lay beyond the blood-brain-barrier. During the first stage of the study, GAL was administered i.m. in different doses ranging from 2.5 to 10 mg/kg. The highest degree of AChE dose dependent inhibition was observed in hypophysis, while that in CNS was lower and became apparent in frontal cortex and hippocampus only after the administration of the dose of 10 mg/kg i.m. In the second stage, CAR was administered daily during 3 consecutive days at a dose of 250 mg/kg p.o. prior to the administration of GAL (10 mg/kg i.m.). Pretreatment with CAR enhanced trend of AChE inhibition in all selected brain parts comparing with single GAL administration, however, significant difference was not observed. Comparing these results with control group, statistical significance was found in frontal cortex, hippocampus and hypophysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5507/bp.2005.053 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFEur Child Adolesc Psychiatry
January 2025
Department of Child and Adolescent Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
While impaired response inhibition has been reported in attention-deficit/hyperactivity disorder (ADHD), findings in disruptive behavior disorders (DBDs) have been inconsistent, probably due to unaccounted effects of co-occurring ADHD in DBD. This study investigated the associations of behavioral and neural correlates of response inhibition with DBD and ADHD symptom severity, covarying for each other in a dimensional approach. Functional magnetic resonance imaging data were available for 35 children and adolescents with DBDs (8-18 years old, 19 males), and 31 age-matched unaffected controls (18 males) while performing a performance-adjusted stop-signal task.
View Article and Find Full Text PDFBrain Imaging Behav
January 2025
Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
Insomnia disorder is a significant global health concern. This research aimed to explore the pathogenesis of insomnia disorder using static and dynamic degree centrality methods at the voxel level. A total of 29 patients diagnosed with insomnia disorder and 28 healthy controls were ultimately included to examine differences in degree centrality between the two groups.
View Article and Find Full Text PDFCommun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!