Proteasome ATPases unravel folded proteins. Introducing a sequence containing only glycine and alanine residues (GAr) into substrates can impair their digestion. We previously proposed that a GAr interferes with the unfolding capacity of the proteasome, leading to partial degradation of products. Here we tested that idea in several ways. Stabilizing or destabilizing a folded domain within substrate proteins changed GAr-mediated intermediate production in the way predicted by the model. A downstream folded domain determined the sites of terminal proteolysis. The spacing between a GAr and a folded domain was critical for intermediate production. Intermediates containing a GAr did not remain associated with proteasomes, excluding models whereby retained GAr-containing proteins halt further processing. The following model is supported: a GAr positioned within the ATPase ring reduces the efficiency of coupling between nucleotide hydrolysis and work performed on the substrate. If this impairment takes place when unfolding must be initiated, insertion pauses and proteolysis is limited to the portion of the substrate that has already entered the catalytic chamber of the proteasome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1440830 | PMC |
http://dx.doi.org/10.1038/sj.emboj.7601058 | DOI Listing |
mSphere
January 2025
Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.
View Article and Find Full Text PDFDrug discovery continues to face a staggering 90% failure rate, with many setbacks occurring during late-stage clinical trials. To address this challenge, there is an increasing focus on developing and evaluating new technologies to enhance the "design" and "test" phases of antibody-based drugs (e.g.
View Article and Find Full Text PDFOur current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape.
View Article and Find Full Text PDFNOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The and NLRs in are highly polymorphic incompatibility genes ( genes) whose products recognize different alleles of the gene via a sensor domain composed of WD40 repeats.
View Article and Find Full Text PDFHuman Kv1.3, encoded by , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!